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1 Introduction

Public and private responses to the spread of an infectious disease rely on accurate

and timely estimates of disease prevalence. For example, individual precautionary be-

haviors respond to the prevalence of COVID-19, HIV/AIDS, Influenza, and Ebola (All-

cott et al., 2020; Philipson, 2000, 1996), as do government-mandated shutdowns and other

non-pharmaceutical interventions (Gupta et al., 2020). Despite its importance, prevalence

is often measured poorly, especially during large outbreaks like the COVID-19 pandemic,

when test capacity is scarce and tests are often allocated to symptomatic patients. Simple

estimators of prevalence can be misleading in these situations. For example, the fraction

of the overall population that tests positive for the disease severely understates prevalence

because most infected people are not tested. On the other hand, the fraction of the tested

population that tests positive likely overstates prevalence because tested people are more

likely to be infected than untested people.

We propose a new approach to measuring prevalence under incomplete and nonran-

dom testing. Previous work by Manski and Molinari (2020) suggested estimating cumu-

lative prevalence— the fraction of people who have ever been infected—from available

data under a “test monotonicity” assumption. We adapt this assumption to the problem

of estimating current or point-in-time prevalence. Applying test monotonicity to the gen-

eral population produces bounds that are typically wide during the COVID-19 pandemic,

because testing rates are low. Our primary contribution is to introduce a new approach

resulting in tighter bounds. The overarching idea is to exploit data on testing and test re-

sults from institutional environments where people are tested at unusually high rates for
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reasons that are unrelated to disease prevalence. We apply and validate the idea among

patients hospitalized for reasons unrelated to COVID-19, such as labor and delivery (Sut-

ton et al., 2020). But the basic strategy is more general. For example there may also

be useful variation in disease testing rates associated with airports, workplaces, confer-

ences, and other settings. Our methods could be used in these other situations to estimate

COVID-19 prevalence or perhaps the prevalence of other diseases in a future outbreak.

Our analysis shows that the method is effective at reducing inferential uncertainty

about point in time prevalence during the COVID-19 epidemic. In highly tested sub-

populations such as hospitalized patients, test monotonicity implies relatively tight bounds

on point-in-time prevalence. Of course, these tight bounds are only useful if the heavily

tested population is in some sense representative of the general population.

We therefore introduce two representativeness assumptions. The first is “hospitaliza-

tion monotonicity”, which requires that patients hospitalized for non-COVID reasons are

(if anything) weakly more likely to be infected with SARS-CoV-2 than the general popu-

lation. This assumption implies that the upper bound on prevalence in the hospitalized

subpopulation is a valid upper bound for the whole population. Because testing rates

are higher in the non-COVID hospitalized population, the assumption typically implies

a tighter population upper bound, albeit with less statistical precision due to lost sample

size. We also consider a second assumption – “hospitalization independence” — which is

more restrictive. It says that patients hospitalized for non-COVID reasons have the same

risk as the general population. Using the independence assumption the hospitalized up-

per bound remains an upper bound on population prevalence. But it also turns out that

– under independence – the lower bound for the non-COVID hospitalized subsample is
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a lower bound for the general population.

These assumptions, though much weaker than the assumptions that are most often

used to estimate prevalence—for example, that all positive cases are tested, or the popu-

lation is tested at random—are nonetheless restrictive and their validity will likely vary

across contexts and sub-populations. Either of these two assumptions permits some ex-

trapolation from the non-COVID hospitalized population to the general population, but

neither assumption is sufficient to point identify prevalence. We present results from both

sets of assumptions and allow readers to reach their own conclusions.

We analyze data on the near-universe of COVID-19 tests and all-causes hospitaliza-

tions in Indiana in 2020. We start by using the test monotonicity condition developed

by (Manski and Molinari, 2020) to estimate the weekly prevalence of active COVID-19

infections. These test monotonicity bounds are narrowest in the week of June 12, when

they imply that between 0.05 percent and 4.5 percent of the Indiana population had an

active infection. Using the hospital data and imposing our new assumptions narrows the

bounds substantially. Under the hospital monotonicity assumption, the upper bound falls

and we find COVID-19 prevalence in the week of June 12 is between 0.5 to 2.2 percent.

Under hospital independence, the bound narrows further to 0.7 to 2.2 percent. In the av-

erage week, imposing hospitalization monotonicity on top of test monotonicity reduces

the width of the prevalence bounds by about half. All three sets of bounds are transparent

and simple to calculate. In the results section, we present a range of bounds to enable

readers to choose the set of results that correspond to the assumptions they find most

credible.

To assess the credibility of our assumptions in the Indiana context, we present three
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pieces of evidence. First, we compute prevalence bounds for all COVID-unrelated hospi-

talizations as well as for specific categories of hospitalizations, such as vehicle accidents,

appendicitis, labor and delivery, and heart attacks. The results are similar across these

sub-populations, which suggests little selection across hospital conditions on the basis of

COVID risk. Second, we show that hospitalized patients are drawn from areas with test

rates similar to or lower than the general population, again suggesting similar COVID

risk. Third, we show that our bounds contain the prevalence estimates from a random

sample survey of the Indiana population (Menachemi et al., 2020; Richard M. Fairbanks

School of Public Health, 2020).

Our approach complements existing methods of estimating prevalence. Two com-

mon methods are biometric survey samples and backcalculation. In a biometric survey,

a representative sample from the population is tested for the disease (Menachemi et al.,

2020; Richard M. Fairbanks School of Public Health, 2020; Gudbjartsson et al., 2020). The

method is slow and expensive, but likely produces accurate estimates. In backcalculation

studies, data on observed hospitalizations or deaths are used to infer disease prevalence

at earlier dates using assumptions about the progression of the disease, hospitalization

rates, and case fatality rates (Brookmeyer and Gail, 1988; Egan and Hall, 2015; Flaxman

et al., 2020; Salje et al., 2020). The approach we pursue combines passively collected ad-

ministrative data with distributional assumptions that are less restrictive than those used

in backcalculation (Manski, 1999; Wing, 2010; Stock et al., 2020; Manski and Molinari,

2020). An advantage of our approach is that, as states already report test rates, posi-

tivity rates, and COVID-related hospitalization rate, our bounds could be calculated at

little additional cost in terms of data infrastructure, and they could also be calculated for
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other heavily tested sub-populations. More generally, our results show that there is con-

siderable value in reporting testing and positivity rates separately by the reason for test;

tests that are not driven by symptoms or exposure may be particularly informative about

population prevalence.

2 Inferring COVID Prevalence from Incomplete Testing

Our goal is to estimate the weekly prevalence of SARS-CoV-2 infections using the kind

of administrative data that is available in most states, accounting for the fact that testing

is likely to be unrepresentative. We use partial identification methods to construct up-

per and lower bounds on prevalence under alternative assumptions. Figure 1 gives a

schematic representation of the data, assumptions, and results. Typically, more restrictive

assumptions yield tighter bounds. We discuss arguments for and against key assump-

tions, which should help readers assess the credibility of the restrictions. However, we

present estimated bounds under a variety of assumptions, so readers may focus on ap-

proach they find most convincing.

2.1 Notation and Worst Case Bounds

Use i = 1...N to index the population of Indiana. Cit is a binary indicator that person

i is infected with SARS-CoV-2 on date t. Leaving conditioning on the date implicit, the

prevalence of SARS-CoV-2 in Indiana at date t is Pr(Cit = 1) = 1
N

∑N
i=1Cit. Next, let Hit

be a binary indicator that the person was hospitalized with a specified diagnosis type.

Then Pr(Cit = 1|Hit = 1) is SARS-CoV-2 prevalence in the hospitalized sub-population
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in Indiana on date t.

Let Dit indicate whether the person was tested. The share of the population tested on

date t is Pr(Dit = 1). Prevalence among the tested is Pr(Cit|Dit = 1). Pr(Cit|Dit = 0)

represents prevalence among people who were not tested. By construction, the value of

Cit is unknown for people with Dit = 0. This means that Pr(Cit|Dit = 0) is not identified

by the data on testing and test outcomes.

As a practical matter, testing is very rare in most of the country in any given week

so Cit is unknown for most of the population. In the absence of any assumptions about

selection into testing, the worst case bounds on prevalence are:

Lw = Pr(Cit = 1|Dit = 1)Pr(Dit = 1)︸ ︷︷ ︸
Confirmed Positive Rate

Uw = Pr(Cit = 1|Dit = 1)Pr(Dit = 1)︸ ︷︷ ︸
Confirmed Positive Rate

+Pr(Dit = 0)︸ ︷︷ ︸
Untested Rate

.

These bounds define the range of prevalence that is compatible with the data. The lower

and upper bounds for a given sub-population and time period can formed using relevant

proportions from test and hospital data. For inference we use the bootstrap (Manski and

Pepper, 2000; Kreider and Pepper, 2007; Manski and Pepper, 2009); see Appendix F for

details.

2.2 Test monotonicity

To narrow the bounds, we impose a version of the “test monotonicity” assumption

that Manski and Molinari (2020) proposed to compute cumulative prevalence:
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Assumption 1. (Test monotonicity) Pr(Cit = 1|Dit = 1) ≥ Pr(Cit = 1|Dit = 0)

When we work with specific subpopulations, such as hospitalized patients (Hit = 1),

we use a conditional version of Assumption 1, which requires that Pr(Cit = 1|Dit =

1, Hit = 1) ≥ Pr(Cit = 1|Dit = 0, Hit = 1).

Assumption 1 requires that prevalence is at least as high among the tested as among the

untested, conditional on any other covariates. Test monotonicity allows for a randomly

chosen tested person to be arbitrarily more likely to test positive than a randomly chosen

untested person. It also allows the possibility that the tested population may be neither

positively nor negatively selected. Importantly, the test not need to hold at the individual

level, only in aggregate. For example, it is possible that individual demand for testing

responds heterogeneously to situational risk or institutional norms. For instance, some

people might avoid testing when they experience additional risk factors, perhaps moti-

vated by dread. Likewise some institutions might avoid ordering tests in cases where

the test results would be redundant given observed symptoms. These individual level

choices would tend to reduce positive selection into testing, and such behaviors are not

ruled out by the test monotonicity assumption. The test monotonicity restriction implies

only that, on net, these negative selection types do not outnumber the positive selection

types.

Test monotonicity constrains the range of prevalence in the untested population. Specif-

ically, Assumption 1 implies that 0 ≤ Pr(Cit = 1|Dit = 0) ≤ Pr(Cit=1|Dit = 1). Under test

monotonicity the bounds on active prevalence are:
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Lm = Pr(Cit = 1|Dit = 1)Pr(Dit = 1)︸ ︷︷ ︸
Confirmed Positive Rate

,

Um = Pr(Cit = 1|Dit = 1)︸ ︷︷ ︸
Test Positivity Rate

.

The new upper bound is the prevalence in the tested population, which is often called the

test positivity rate and is widely reported. In our data, test rates are often less than 1 percent

and positivity rates in the population are often 10 percent or less, so this assumption

brings the upper bound down from 99 percent to 10 percent or less. These bounds address

positive selection into testing because they are valid under test monotonicity, and hence

allow for even potentially extreme selection.

2.3 Inferring Population Prevalence From Non-COVID Hospital Pa-

tients

It is straightforward to construct test monotonicity bounds on prevalence overall and

in sub-populations, such as hospitalized patients. We emphasize that the test monotonic-

ity assumption must apply in each subpopulation .1 Testing rates are higher in hospital

settings, which means the bounds are much tighter for hospital sub-populations than

for the general population. Thus, assumptions that link hospital and population preva-

lence could substantially reduce uncertainty about population prevalence. We pursue

two types of assumptions that enable extrapolation from non-COVID hospital popula-

1 In support of test monotonicity in the hospitalized population, we find that patients with symptoms of
COVID are about twice as likely as other patients to be tested.
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tions to the general population: (i) hospitalization monotonicity and (ii) hospitalization

independence.

2.3.1 Hospitalization Monotonicity

For some situations or patient types, it is reasonable to assume that hospitalized pa-

tients are somewhat adversely selected on health. Applied to COVID-19, adverse selec-

tion suggests a hospitalization monotonicity assumption that SARS-CoV-2 prevalence is

weakly higher in the hospitalized sub-population than the general population. Stated

formally:

Assumption 2. (Hospitalization Monotonicity) Pr(Cit = 1|Hit = 1) ≥ Pr(Cit = 1)

The hospitalization monotonicity assumption may be more credible for some types of

hospital patients than others and such adjustments can be handled with additional con-

ditioning. The important point is that layering the hospital monotonicity assumption

on top of the test monotonicity assumption can help reduce the width of the bounds on

prevalence in both the general population and the hospital population.

For example, suppose UH
m and LHm are the upper and lower bounds on prevalence in

the hospitalized sub-population under Assumption 1 (test monotonicity). And let Um and

Lm represent test monotonicity bounds in the general population. Adding Assumption 2

(hospitalization monotonicity) creates a cross-population restriction, which implies that

the upper bound on population prevalence (Um) cannot be larger than the upper bound on

hospital prevalence (UH
m ). The bounds on population prevalence under both test mono-

tonicity and hospitalization monotonicity are:
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Um,h = min
{
Um, U

H
m

}
= min {Pr(Cit = 1|Dit = 1), P r(Cit = 1|Dit = 1, Hit = 1)}

= min {Population test positivity,Hospital test positivity} ,

In practice, the upper bound on prevalence among non-COVID hospital patients is typ-

ically lower than the population upper bound. This means that the test positivity rate

among non-COVID hospitalizations is an upper bound on population prevalence. Thus

Assumption 2 typically tightens the bounds on prevalence. However, there are far fewer

hospitalized patients than people in the population, so there is a trade-off between tighter

identification and the statistical precision of the estimates of the bounds.

2.3.2 Hospitalization Independence

For some types of patients, it may be credible to assume that the risk of hospitalization

is actually unrelated to the risk of SARS-CoV-2 infection. Formally, this type of hospital-

ization independence assumption can be written:

Assumption 3. (Hospitalization Independence) Pr(Cit = 1|Hit = 1) = Pr(Cit = 1)

Assumption 3 (hospital independence) implies that people who are hospitalized for a

specified non-COVID health condition have the same probability of being infected with

the virus as the general population. An equivalent statement is that people with SARS-

CoV-2 have the same probability of being hospitalized for a non-COVID condition as

people without SARS-CoV-2.
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Combining the test monotonicity and hospitalization independence assumptions can

narrow the bounds on population prevalence. As before, let Um and Lm represent test

monotonicity bounds in the general population. And let UH
m and LHm be test monotonicity

bounds for the hospital population. Under both test monotonicity and hospital indepen-

dence, the bounds on population prevalence are:

Lm,ind = max
{
Lm, L

H
m

}
= max {Pr(Cit = 1|Dit = 1)Pr(Dit), P r(Cit = 1|Dit = 1, Hit = 1)Pr(Dit)} ,

Um,ind = min
{
Um, U

H
m

}
= min {Pr(Cit = 1|Dit = 1), P r(Cit = 1|Dit = 1, Hit = 1)} .

It turns out Um,ind = Um,h so the upper bound is the same under hospitalization indepen-

dence and hospitalization monotonicity. The hospital independence assumptions affects

the population lower bound. In practice, the lower bound is higher among hospitalized

sub-populations which means that – under the independence assumption – the lower

bound on population prevalence is the confirmed positive rate among non-COVID hos-

pitalizations.

2.4 Summary and data requirements

Figure 1 summarizes our methodological results and serves as a guide for interpret-

ing our empirical findings. The overall approach requires data on the tested population
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that can be linked to hospital inpatient records, which contain diagnosis information.

We work with three main assumptions: two weak monotonicity assumptions, and one

conditional independence assumption. The flow chart shows which assumptions yield

which bounds on population prevalence. Using only data and no assumptions, we have

worst-case bounds for prevalence in the general population and for hospitalized sub-

populations. Under Assumption 1 (test monotonicity) the bounds tighten. The lower

bound becomes the confirmed positive rate and the upper bound the test positivity rate.

Assumptions 2 and 3 let us extrapolate from the hospitalized sub-population to the

general population. But these bounds also turn out to be fairly simple objects. Under

Assumption 2 (hospitalization monotonicity) the upper bound on population prevalence

tightens to the test positivity rate in the hospitalized population. Under Assumption 3

(hospitalization independence), the lower bound on population prevalence tightens to

the confirmed positive rate in the hospitalized population and the upper bound is the

same as it is under hospital monotonicity.

An appealing feature of these bounds is that they can be calculated without new data

collection efforts. Every state already reports the number of tests and the number of

positive tests, and many states report the number of COVID-related hospitalizations.2 To

release all of the bounds we report in the paper, states would only have to report test and

positivity rates for non-COVID-related hospitalizations. This appears possible because

many states already report ”suspected” or ”under investigation” COVID hospitalizations,

defined as hospitalized patients exhibiting COVID-like illness (Arizona Department of

2 See, e.g., The COVID Tracking Project (2020).

12



Health Services, 2020; Illinois Department of Public Health, 2020a,b)).3

3 Indiana Hospital and Testing Data

3.1 Test and hospitalization data sets

Our test data consist of all tests polymerase chain reaction (PCR) tests for SARS-CoV-2

conducted in Indiana between January 1, 2020 and December 18, 2020, reported to the Re-

genstrief Institute and available for research. This is the near-universe of PCR tests in the

state. Appendix Figure A.1 shows that the number of cases in our tests data matches the

state’s reported number almost perfectly, until November, when they diverge somewhat,

as our data appear to be missing some tests. The consequence of these missing tests, in

our framework, is a reduced lower bound.

Our hospitalization data consist of all admissions to hospitals belonging to the In-

diana Network for Patient Care (INPC), a health information exchange that centralizes

and stores data from health providers across the state of Indiana.4 The hospital data are

derived from the same database that the state uses for reporting hospitalizations on its

dashboard (Indiana State Department of Health, 2020). The hospital inpatient data con-

tain separate observations for each admission. The same hospitalization can appear in

the data set multiple times, for example because an insurer and a hospital both report

it. To de-duplicate these records, we keep one observation per admission time (defined

3 States reporting both confirmed SARS-CoV-2 hospitalizations and hospitalizations of suspected cases
or cases under investigation include California (California Department of Health, 2020), Colorado (Col-
orado Department of Public Health and Environment, 2020), Mississippi (Mississippi State Department of
Health, 2020), Tennessee (Tennessee Department of Health, 2020), and Vermont (Vermont Department of
Health, 2020).

4 See Grannis et al. (2005) for more details.
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second-by-second), keeping the observation with the most diagnosis codes.5 We link the

testing and hospital data sets to each other and, for a subset of patients, to demographic

information.

3.2 Measuring tests and cases

In-hospital testing, positivity rate, and confirmed positives: Because our data do

not record in-hospital testing, we match tests to hospitalizations based on date. We say

a hospitalized patient is tested in-hospital if she had at least one SARS-CoV-2 test dated

between 5 days prior to admission to 1 day after admission, and she had a positive if she

had at least one positive test in that window. We look in a week-long window so that we

can compare hospital and population testing rates. This window includes tests that hap-

pen a few days prior to admission, important for for patients with planned procedures,

as well as tests a day after admission, important for admissions from the emergency de-

partment. Appendix Figure A.2, shows that among non-ICLI hospitalizations, test rates

are especially elevated from 5 days before admission to 4 days after. We keep the post-

admission window short to ensure that we do not pick up hospital-acquired SARS-CoV-2

infections (however Rhee et al. (2020) indicate that hospital-acquired SARS-CoV-2 infec-

tions are quite rare).

Population Testing and Positivity Rates: We examine population-wide test rates and

positivity rates on a week-by-week basis. We define test rates as the share of the popula-

tion tested at least once in a given week, and the positive rate as the share of people with

5 In 0.02 percent of cases where there is ambiguity about which record to keep; in these cases we choose at
random.
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at least one positive test in a given week, among people tested that week.

3.3 Sample construction

Throughout, a patient is in the “test sample” if they are tested at least once, and in the

“inpatient sample” if they are hospitalized at least once. We construct three hospitaliza-

tion samples, as follows.

ICLI and non-ICLI Hospitalizations: We start by defining hospitalizations for influenza-

and COVID-like illness (ICLI) using ICD-10 codes. We collect diagnoses codes for influenza-

like illness from (Armed Forces Health Surveillance Center, 2015), and codes for COVID-

like illness from (Center for Disease Control and Prevention, 2020). Appendix B lists

these ICD-10 codes used to define the analytic samples. These diagnoses include include

general symptoms such as cough or fever, as well as more specific diagnoses like acute

pneumonia, viral influenza, or COVID-19. A hospitalizations is ICLI-related if it has any

influenza- or COVID-like illness (ICLI) diagnoses. Non-ICLI hospitalizations are ones

that have a diagnosis but are no ICLI-related diagnoses.

We start our analysis with the non-ICLI sample for two reasons. First, our hospital

independence assumption is most plausible for hospitalizations that are not obviously

COVID-related, and this sample meets that criteria. Second many states already classify

hospitalizations as ICLI-related; thus non-ICLI hospitalizations are identifiable and mea-

surable in near-real time, so this sample can be studied more broadly.

However, the non-ICLI sample may not satisfy the hospital representativeness as-

sumptions. First, inclusion in this sample implicitly risks conditioning on COVID itself.6

6 We show in Appendix E, however, that the magnitude of the resulting sample selection bias is small,
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Second, COVID is a new disease with heterogeneous symptoms, so even if a patient is

hospitalized because of COVID, she may not have one of our flagged diagnoses, and we

may incorrectly call her hospitalization non-ICLI (Yang et al., 2020).

Clear-cause hospitalizations: To avoid these problems, we study a third sample,

which we call the “clear cause” sample. These are hospitalizations with a clear cause

that is not obviously COVID-related. We define clear-cause hospitalizations as hospital-

izations with a diagnosis code for labor and delivery, AMI, stroke, fractures, crushes, open

wounds, appendicitis, vehicle accidents, other accidents, or cancer. For all of these condi-

tions except cancer, we flag hospitalizations with a diagnosis at any priority. For cancer,

we flag hospitalizations with a cancer diagnosis code as the admitting diagnosis, the pri-

mary final diagnosis, or any chemotherapy diagnosis. Although the clear causes do not

include COVID-like diagnoses (such as respiratory distress), a clear cause admission can

nonetheless also be an ICLI hospitalization. This is because if a patient is admitted for,

say, cancer, but has respiratory distress as a morbidity, we would treat it as both a cancer

admission and an ICLI admission.

Summary statistics and test rates: We show summary statistics for all of our samples

in Table 1, as well as for the state as a whole (from Census Fact Finder and United States

Census Bureau (2019)). The average tested and hospitalized patient is substantially older

than the population as a whole, and also more likely to be female. Because the tested

and hospitalized samples are not age representative of the general population, in what

follows we reweight all samples to match the population age distribution.7 The tested

because ICLI hospitalizations are rare.
7 Specifically, we calculate test rates and positivity rates in week-by-age-group cells, for age groups 0-17, 18-

30, 30-50, 50-64, 65-74, and 75 and older. Then we average these age-specific rates across the age groups,
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and hospitalized samples are fairly similar to the general population in terms of racial

composition. Limiting the inpatient sample to admissions with diagnoses reduces our

sample size substantially, but it does not appear to change its demographic profile. About

one-in-three Hoosiers has ever had a COVID test, whereas about half of hospitalized

Hoosiers have had a test.

Although hospitalized patients are about 44 percent (i.e. 49%/34%) more likely to

have ever been tested than the general public, during the period of their actual hospital-

ization they are at least ten times more likely to be tested, as we show in Figure 2, which

plots weekly age-adjusted for each sample.8 The testing rate in the general population

grew from less than 1 percent in May and June to a peak of 3 percent in mid-November.

Test rates for ICLI hopsitalizations varied between 60 and 75 percent in most weeks. Test-

ing rates among non-ICLI hospital patients and among the clear-cause non-COVID hos-

pital patients were 25-40 percent in May and later months.

Despite their high rates, hospitalized patients are not always tested. Even ICLI pa-

tients are tested only about two-thirds of the times. Several factors explain incomplete

testing. Highly symptomatic patients may not be tested because a test would not nec-

essarily influence care, and could generate a false negative, and testing capacity was

sometimes limited. They also might not receive a SARS-CoV-2 test if they had a positive

influenza test, as that provides an alternative explanation for the symptoms. For asymp-

tomatic patients, hospital policy encourages testing, but not always require it. The Chief

Medical Officer of a large Indiana hospital system indicted that asymptomatic patients

weighting each group by its population share.
8 We report the exact values of each of the test rates and the weekly number of admissions in Appendix

Table A.1. and age-unadjusted rates in Appendix Table A.2.
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would typically be tested at admission, but this might vary across hospitals depending

on their capacity to isolate patients in private or semi-private rooms (Weaver, 2020). At

another large hospital system, the Chief Medical Officer reported that testing was at times

based on capacity, but patients coming into particular divisions were more likely to be

tested, as were patients coming in for operations (Crabb, 2020). Our personal experi-

ence was that hospitals encouraged testing but did not strictly require it.9 This anecdotal

evidence indicates that non-ICLI hospitalizations provides a strong encouragement but

not a mandate for testing among asymptomatic or mildly symptomatic patients. Greater

testing of mildly symptomatic patients would be consistent with our test monotonicity

assumption applied to non-ICLI hospitalizations.

3.4 Justification of hospital representativeness assumptions

Our goal is to use the hospitalization data and hospital representativeness assump-

tions to tighten bounds on population COVID-19 prevalence. Here briefly provide three

justifications for the hospital representativeness assumptions in our data; Appendix G

provides more detail. First, we benchmark our bounds against prevalence estimates

obtained from the Indiana COVID-19 Random Sample Study (Menachemi et al., 2020;

Richard M. Fairbanks School of Public Health, 2020).10 Our bounds under hospital mono-

tonicity contain the random sample estimates, and we cannot reject the hypothesis that

our bounds hospital independence do as well. Second, we show that non-COVID hos-

9 One of us had a child born in August at a hospital in our sample. The mother was encouraged to obtain
a SARS-CoV-2 test prior to admission, but the father (who attended the birth) was not. The mother’s test
result was not available until after admission. Happily, it was negative.

10 Our data do not contain the test results from the Random Sample Study, so we compare our bounds to
the published results.
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pitalized patients are not significantly different from the general population in the like-

lihood of having been tested for SARS-CoV-2 prior to their hospitalization. Interpreting

prior testing as a proxy for risk, this suggests that non-COVID hospitalized patients are at

a similar risk, consistent with hospital monotonicity and independence. Third, we show

below that bounds obtained for a variety of detailed hospitalization subsamples (such

as labor and delivery, vehicle accidents, appendicitis, or cancer) are fairly similar. Un-

der the assumption that some of these conditions (e.g. appendicitis) occur independently

of COVID risk, this result is consistent with hospitalization monotonicity and indepen-

dence. It also suggests robustness to the exact conditions used to define non-COVID

hospitalization.

4 Bounds on COVID-19 prevalence

4.1 Bounds by broad samples

The high test rates among the hospitalized populations shown in Figure 2 imply rel-

atively tight bounds on in-hospital prevalence under our test monotonicity, and on pop-

ulation prevalence under our representativness assumptions. We plot these population

bounds in Figure 3.11. The top panel plots population bounds using ICLI-hospitalizations

under test monotonicity. The remaining panels plot population bounds for non-ICLI hos-

pitalizations and clear cause hospitalizations, under each representativeness assumption.

We also plot 95% confidence intervals for the bounds in dashed lines.

Several patterns are clear in the figure. First, the ICLI hospitalized population has

11 See Appendix Tables A.3 -A.6 for exact values and age unadjusted bounds
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higher upper and lower bounds on prevalence than the other groups (under test mono-

tonicity). For the ICLI patients, the prevalence bounds begin at 6-18 percent in the first

week of our sample, increase to 33-39 percent in the last week of March, decline steadily

to roughly 12-18 percent in the summer and 8-15 percent in early fall, and increase dra-

matically in November. Although high, these bounds rule out the possibility that even

a majority of symptomatic patients are infected with SARS-CoV-2 in almost every week.

The bounds for ICLI-hospitalized patients separate from the population wide bounds,

implying rejection of representativeness conditions for the ICLI sub-population.

Second, the hospitalized populations have tight prevalence prevalence bounds; in fact

the bounds for the COVID-unrelated hospitalizations sample are always contained within

the population-based bounds. Under (conditional) test monotonicity and hospitalization

monotonicity, the width of the bounds falls (relative to just test monotonicity) by 60 per-

cent on average. Under hospitalization independence, the width falls by 70 percent. Ac-

counting for the greater statistical uncertainty of the hospital-based estimates, the width

still falls by 45-55 percent on average. Indeed, despite some sampling error, in all but

three weeks, the 95% confidence interval for bounds under hospital independence are

contained in the point estimate for the bounds under test monotonicity alone.

Third, the bounds for the non-ICLI hospitalization sample and for the clear-cause hos-

pitalization sample are nearly indistinguishable, although the confidence intervals are

somewhat wider for clear-cause hospitalizations. The main differences are that the upper

bound for non-ICLI hospitalization is perhaps slightly higher, and the confidence inter-

vals wider. This fact is important because non-ICLI hospitalizations are potentially easier

to measure, but they may be negatively selected in the sense that by construction they
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may exclude COVID-likely cases. (However Appendix E shows the bias is likely small in

our application.) Empirically, the similarity of the clear-cause and non-ICLI bounds pro-

vides some evidence in support of using non-ICLI hospitalizations to measure general

prevalence.

Fourth, meaningful trends are evident from the bounds under hospitalization inde-

pendence. The upper bound for all samples shows a U-shaped pattern, with lower and

upper bounds high in the spring, falling in the summer, and rising rapidly through the

fall. This pattern does not necessarily indicate that prevalence follows a U-shaped trend,

because the lower bound for the population as a whole remains fixed at essentially zero.

However the non-ICLI hospitalization bounds are sufficiently tight to confirm that preva-

lence is lower in mid-summer than late fall. For example, the upper bound the week of

September 18 is 1.6 percent; this is lower than the lower bound in any week after October

30. Our 95% confidence intervals also allow us reject that the bounds overlap between

September 18 and any week in November. Thus under hospital independence and test

monotonicity, our hospital based bounds are tight enough to show that prevalence unam-

biguously rose from summer to fall.

4.2 Bounds by cause of admission

Our overall clear-cause hospitalization sample pools many distinct causes, including

among others labor and delivery, vehicle accidents, and other accidents, including falls.

In principle these hospitalizations may differ in their SARS-CoV-2 infection risk. One

might worry, for example, that pregnant women are especially cautious and careful not to
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become infected. In contrast, people who get into vehicle accidents during the epidemic

might be a less cautious group either because they are not careful drivers, or because they

are out of the house at all.

Since the credibility of key assumptions may vary across different clear causes, we es-

timated test rates and bounds separately for each of our clear causes of hospitalizations.

Because each individual cause has relatively few hospitalizations, we aggregate across all

time periods to form these estimates. We focus on nine sets of causes: AMI (i.e. heart

attack), appendicitis, cancer, fractures, labor/delivery, non-vehicles accidents, stroke, ve-

hicle accidents, and wounds. These six groups have between 2,000 and 14,000 hospital-

izations each. The age profile varies considerably across groups by cause of admission

(Appendix Table A.7). All ages are represented in the cancer sample. Appendicitis and

vehicle accidents both afflict more young people. AMI, stroke, and other accidents afflict

older people; and labor and delivery is limited, of course, to women of childbearing age.12

Because not all age groups are represented in every category, we do not age-weight these

results.

We report bounds by clear cause of admission in Table 2. Labor and delivery is tested

at the lowest rate, about 20 percent; the other groups are tested 25-40 percent of the time.

The bounds are similar across all groups. The upper bound ranges from 2.1 percent for

cancer to 8.7, and the lower bound (under hospitalization Independence) from .6 to 3.2

percent. The bounds are mutually consistent in the sense that their 95 percent confidence

intervals overlap.

12 These groups are not necessarily mutually exclusive, and in particular there is overlap between injury
and accidents.
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Patients admitted to the hospital for different reasons and with different demographic

profiles are all nonetheless tested at a high rate and with similar bounds on prevalence.

We might have worried that cancer patients, with pre-existing conditions, would be more

cautious than patients from vehicle accidents. Instead we see both groups are on the low

end. Thus overall there is no clear evidence that prevalence bounds differ substantially

across types of admissions. This is perhaps reassuring for the view that pooling many

distinct causes of admissions can nonetheless generate meaningful bounds on prevalence.

5 Conclusion

In fast-moving pandemics, testing is often limited and rationed to the most symp-

tomatic, making it difficult to infer population prevalence. We propose examining popu-

lations that are heavily tested for reasons plausibly unrelated to their underlying disease

prevalence, focusing on patients hospitalized during the COVID-19 pandemic for rea-

sons unrelated to COVID-19. A test monotonicity monotonicity assumption yields tight

bounds on prevalence for this population. To extrapolate from this population to the gen-

eral population, we introduce and validate a relatively weak hospitalization monotonicity

assumption, and a stronger hospitalization independence assumption. Under either as-

sumption, the hospitalized population yields useful bounds on population prevalence,

tighter than those obtained with population wide testing data.

Our bounds could be calculated by states or other health agencies with little addi-

tional data infrastructure. Similar bounds could be constructed for other groups that are

tested often and for reasons unrelated to COVID-19 risk, such as students, international
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travelers, and some workers. Of course, validating the representativeness assumptions

(monotonicity or independence) would be important. Overall, our results show the value

of reporting test rates and test results separately by reason for testing.
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Figure 1: Stronger assumptions generate tighter prevalence bounds

SARS-CoV-2 test data Linked Hospital and SARS-CoV-2 test data

Worst case bound, population prevalence:

𝐿𝑤 = Pr 𝐶 = 1 𝐷 = 1 Pr 𝐷 = 1
𝑈𝑤 = 𝐿𝑤 + 1− Pr 𝐷 = 1

Worst case bound, hospital prevalence:

𝐿𝑤
𝐻 = Pr 𝐶 = 1 𝐷 = 1, 𝐻 = 1 Pr 𝐷 = 1| 𝐻 = 1

𝑈𝑤
𝐻 = 𝐿𝑤

𝐻 + 1 − Pr 𝐷 = 1|𝐻 = 1

Assumption 1: 

Test monotonicity

Assumption 1: 

Test monotonicity

Test monotonicity bound, population prevalence:

𝐿𝑚 = Pr 𝐶 = 1 𝐷 = 1 Pr 𝐷 = 1
𝑈𝑚 = Pr 𝐶 = 1 𝐷 = 1

Test monotonicity bound, hospital prevalence:

𝐿𝑚
𝐻 = Pr 𝐶 = 1 𝐷 = 1,𝐻 = 1 Pr 𝐷 = 1| 𝐻 = 1

𝑈𝑚
𝐻 = Pr 𝐶 = 1 𝐷 = 1,𝐻 = 1

Assumption 2: 

Hospitalization monotonicity

Test-hospital monotonicity bound, population prevalence:

𝐿𝑚𝐻 = Pr 𝐶 = 1 𝐷 = 1 Pr 𝐷 = 1
𝑈𝑚𝐻 = min Pr 𝐶 = 1 𝐷 = 1 , Pr 𝐶 = 1 𝐷 = 1,𝐻 = 1

Assumption 3: 

Hospitalization independence

Test monotonicity–hospital independence bound, population prevalence:

𝐿𝑚𝐻 = max Pr 𝐶 = 1 𝐷 = 1 Pr 𝐷 = 1 , Pr 𝐶 = 1 𝐷 = 1,𝐻 = 1 Pr 𝐷 = 1 𝐻 = 1 ,
𝑈𝑚𝐻 = min Pr 𝐶 = 1 𝐷 = 1 , Pr 𝐶 = 1 𝐷 = 1,𝐻 = 1

Notes: Figure illustrates how increasingly strong assumptions generate successively tighter bounds on
prevalence. Without any assumptions the data yield the worst case bounds. With a test monotonicity
assumption, we bound population prevalence and hospital prevalence. With hospitalization monotonicity,
the hospital bounds are informative for population prevalence. With hospital independence, the bounds
tighten further. The flowchart maintains the assumption of no measurement error throughout, for reasons
described in Appendix D.
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Figure 2: Weekly test rates by sample

ICLI hospitalizations

Non-ICLI hospitalizations

Clear cause hospitalizations

Population

0
.2

.4
.6

.8

3/13 4/13 5/13 6/13 7/13 8/13 9/13 10/13 11/13 12/13

Notes: Figure plots the age-standardized test rate in each seven-day period of our data, for four samples:
the general population, ICLI hospitalizations, non-ICLI hospitalizations, and clear cause hospitalizations.
ICLI hospitalizations have at least one diagnosis for influenza-like or COVID-like illness. Clear cause hos-
pitalizations are hospitalizations for cancer, labor and delivery, AMI, stroke, fracture or crush, open wound,
appendicitis, or accidents (vehicle or other). See Appendix B for definitions. For the general population,
the test rate is the fraction of people tested at least once in that week. For the hospitalizations, the test rate
is the fraction of hospitalizations admitted in that week with a test between two days prior to admission
and four days after. To age-standardize we reweighs the hospitalization samples to match the population
age distribution.
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Figure 3: Weekly bounds on prevalence under test monotonicity and hospital representa-
tiveness assumptions
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Notes: The scale in the top figure differs from the others. Figure plots age-standardized bounds on preva-
lence under test monotonicity and hospital monotonicity or independence, for the indicated hospitalized
population, in dark gray. For comparison the figure plots (in light gray) the bound using only population-
wide data. See notes to Figure 2 for sample definitions. The ICLI-hospitalization figure plots bounds for
hospitalized patient under test monotonicity, but does not plot population bounds,because the represen-
tativness assumptions are rejected. The dashed line depict 95% confidence intervals for the bound. To
age-standardize we reweight the hospitalization samples to match the population age distribution.
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Table 1: Person-level summary statistics

Hospitalized

Full Ever Has Not Clear
Sample State Tested Ever Diagnosis ICLI cause ICLI

(1) (2) (3) (4) (5) (6) (7)

Age as of 1/1
Born after 1/1 0.004 0.118 0.129 0.143 0.003 0.005
0-17 0.237 0.142 0.036 0.032 0.030 0.029 0.034
18-29 0.166 0.208 0.121 0.123 0.133 0.181 0.039
30-50 0.250 0.279 0.184 0.180 0.183 0.182 0.138
50-64 0.197 0.202 0.204 0.197 0.189 0.191 0.264
65-74 0.087 0.095 0.162 0.158 0.150 0.171 0.231
75+ 0.063 0.070 0.175 0.182 0.172 0.243 0.289
Age unknown 0.001 0.001 0.000 0.000 0.000 0.000

Gender
Male 0.493 0.442 0.417 0.428 0.420 0.393 0.496
Female 0.507 0.558 0.583 0.572 0.580 0.607 0.504
Unknown 0.012 0.001 0.000 0.000 0.000 0.000

Race/ethnicity
White 0.848 0.877 0.862 0.834 0.835 0.853 0.828
Black 0.099 0.101 0.121 0.147 0.146 0.128 0.158
Race unknown 0.000 0.000 0.000 0.000 0.000 0.000

Test variables
Ever tested 0.343 1.000 0.489 0.526 0.498 0.550 0.794
Confirmed positive 0.058 0.169 0.085 0.092 0.061 0.069 0.308

People 6,637,426 2,278,910 539,903 325,410 291,650 66,887 51,870
Counties 92 92 92 92 92 92 92

Notes: Column reports characteristics on the state population, Column 2 reports characteristics for the set
of people appearing in the test data, and columns 3-7 for people appearing the hospital data, ever (column
3), with at least one diagnosis (column 4), at least one non-ICLI hospitalization for ICLI (column 5), at least
one clear cause hospitalization (column 6, see text for details), or at least one ICLI hospitalization with a
diagnosis and not for ICLI (column 7).
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Table 2: Bounds on prevalence by cause of admission, pooling all time periods

Cause of admission # Admissions Test rate Bound (H-M) Bound (H-I)

Ami 8,624 0.382 [0.002, 0.085] [0.033, 0.085]
(0.002, 0.095) (0.029, 0.095)

Appendicitis 1,961 0.384 [0.002, 0.045] [0.017, 0.045]
(0.002, 0.059) (0.012, 0.059)

Cancer 9,585 0.337 [0.002, 0.021] [0.007, 0.021]
(0.002, 0.027) (0.006, 0.027)

Fracture 13,718 0.363 [0.002, 0.041] [0.015, 0.041]
(0.002, 0.046) (0.013, 0.046)

Labor Delivery 13,304 0.197 [0.002, 0.041] [0.008, 0.041]
(0.002, 0.048) (0.007, 0.048)

Other Accident 9,782 0.313 [0.002, 0.088] [0.027, 0.088]
(0.002, 0.098) (0.024, 0.098)

Stroke 8,297 0.250 [0.002, 0.066] [0.017, 0.066]
(0.002, 0.077) (0.014, 0.077)

Vehicle Accident 1,944 0.271 [0.002, 0.025] [0.007, 0.025]
(0.002, 0.038) (0.003, 0.038)

Wound 3,642 0.310 [0.002, 0.077] [0.024, 0.077]
(0.002, 0.093) (0.019, 0.093)

Notes: Table reports the number of admissions, in-hospital test rate, and bounds on COVID prevalence, by
cause of admission. H-M bounds are valid under hospital monotonicity, and H-I are valid under hospital
independence (both require test monotonicity). The H-I and H-M upper bound is identical, and the lower
bound for H-M is the same across causes because it is determined by the population confirmed positive
rate. The sample consists of all admissions with the indicated cause between March 13 and December 18,
2020. See Appendix B for a precise definition of each cause. We report the point estimate for the bounds in
brackets, and 95% confidence interval in parentheses.
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Figure A.1: Positive cases in our data and on state dashboard
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Notes: Figure plots 7-day moving average of the number of positive cases reported on Indiana’s COVID-19
dashboard (Indiana State Department of Health, 2020), as well as the number of positive cases observed in
our data.
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Figure A.2: Timing of tests relative to hospitalization
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Notes: Figure plots the fraction of hospitalized patients who had a SARS-CoV-2 test on the indicated day
relative to their admission, for non-ICLI hospitalizations, defind as hospitalizations with no diagnosis for
influenza-like or COVID-like illness. Patients who are never tested are in the denominator, and a patient
can be tested on multiple days.
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Table A.1: Weekly test rates, by sample

Sample Population Non-ICLI Clear Cause ICLI

% Tested N % Tested N % Tested N % Tested
Week (1) (2) (3) (4) (5) (6) (7)

13mar 0.001 6,094 0.034 1,363 0.021 1,140 0.294
20mar 0.002 5,173 0.115 1,278 0.065 1,226 0.734
27mar 0.003 4,697 0.155 1,189 0.124 1,342 0.776
03apr 0.003 4,677 0.174 1,273 0.108 1,204 0.754
10apr 0.004 4,841 0.177 1,248 0.114 1,078 0.741
17apr 0.005 5,057 0.194 1,348 0.185 1,191 0.702
24apr 0.006 5,303 0.196 1,431 0.150 1,108 0.621
01may 0.007 5,832 0.302 1,442 0.303 1,195 0.755
08may 0.008 6,187 0.325 1,555 0.273 1,106 0.756
15may 0.009 6,774 0.321 1,576 0.268 1,120 0.776
22may 0.007 6,793 0.315 1,581 0.272 1,059 0.729
29may 0.008 6,949 0.318 1,562 0.291 975 0.715
05jun 0.010 7,359 0.314 1,715 0.291 996 0.753
12jun 0.012 7,554 0.323 1,707 0.251 974 0.728
19jun 0.012 7,437 0.320 1,644 0.279 946 0.759
26jun 0.011 7,434 0.325 1,655 0.291 898 0.739
03jul 0.010 7,441 0.325 1,660 0.289 937 0.719
10jul 0.013 7,591 0.346 1,702 0.340 1,050 0.744
17jul 0.015 7,650 0.340 1,658 0.289 992 0.708
24jul 0.014 7,671 0.311 1,675 0.279 1,028 0.750
31jul 0.015 7,516 0.323 1,634 0.278 1,126 0.690
07aug 0.016 7,722 0.308 1,638 0.278 1,106 0.636
14aug 0.017 7,709 0.321 1,751 0.274 1,048 0.725
21aug 0.016 7,745 0.300 1,770 0.262 1,114 0.679
28aug 0.016 7,733 0.290 1,715 0.247 1,006 0.671
04sep 0.015 7,448 0.299 1,637 0.268 1,015 0.657
11sep 0.016 7,871 0.321 1,717 0.286 1,030 0.637
18sep 0.016 7,857 0.301 1,719 0.246 1,074 0.622
25sep 0.016 7,791 0.310 1,678 0.271 1,146 0.641
02oct 0.018 7,655 0.311 1,713 0.265 1,306 0.647
09oct 0.016 7,476 0.303 1,622 0.256 1,414 0.635
16oct 0.022 7,333 0.343 1,597 0.274 1,457 0.650
23oct 0.023 7,356 0.364 1,603 0.292 1,521 0.689
30oct 0.026 7,379 0.346 1,568 0.311 1,629 0.583
06nov 0.029 7,508 0.360 1,705 0.280 2,126 0.612
13nov 0.032 7,013 0.439 1,579 0.418 2,280 0.624
20nov 0.026 6,268 0.431 1,462 0.405 2,152 0.633
27nov 0.029 6,433 0.475 1,466 0.440 2,151 0.643
04dec 0.022 5,668 0.474 1,217 0.456 1,716 0.668
11dec 0.005 2,284 0.480 426 0.532 689 0.667

Notes: Table reports the weekly test rate for the population, and the number of hospitalizations and test
rate, by type of hospitalizations, weighted to match the population age distribution.. (The population size is
6.64 million in all weeks.) ICLI hospitalizations have at least one diagnosis for influenza-like or COVID-like
illness. Clear cause hospitalizations are hospitalizations for cancer, labor and delivery, AMI, stroke, fracture
or crush, open wound, appendicitis, or accidents (vehicle or other). See Appendix B for definitions.
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Table A.2: Weekly test rates, by sample, not age weighted

Sample Population Non-ICLI Clear Cause ICLI

% Tested N % Tested N % Tested N % Tested
Week (1) (2) (3) (4) (5) (6) (7)

13mar 0.001 6,919 0.034 1,368 0.030 1,143 0.294
20mar 0.002 6,011 0.102 1,281 0.085 1,231 0.726
27mar 0.003 5,546 0.158 1,193 0.142 1,344 0.833
03apr 0.003 5,561 0.173 1,281 0.158 1,207 0.795
10apr 0.004 5,703 0.190 1,250 0.174 1,079 0.772
17apr 0.005 5,914 0.196 1,353 0.217 1,195 0.720
24apr 0.006 6,139 0.196 1,434 0.178 1,110 0.642
01may 0.007 6,711 0.287 1,444 0.328 1,200 0.756
08may 0.008 7,101 0.310 1,556 0.330 1,110 0.746
15may 0.009 7,704 0.322 1,580 0.330 1,128 0.762
22may 0.007 7,717 0.305 1,586 0.308 1,061 0.734
29may 0.009 7,877 0.316 1,569 0.327 982 0.737
05jun 0.010 8,270 0.321 1,721 0.317 1,001 0.744
12jun 0.012 8,432 0.318 1,711 0.310 983 0.702
19jun 0.012 8,313 0.319 1,651 0.319 948 0.694
26jun 0.011 8,381 0.318 1,661 0.332 903 0.708
03jul 0.010 8,367 0.311 1,668 0.321 945 0.705
10jul 0.013 8,547 0.325 1,708 0.341 1,052 0.691
17jul 0.015 8,655 0.327 1,661 0.335 1,006 0.706
24jul 0.015 8,601 0.307 1,680 0.305 1,033 0.712
31jul 0.015 8,505 0.320 1,641 0.315 1,135 0.674
07aug 0.016 8,666 0.304 1,642 0.322 1,108 0.663
14aug 0.017 8,619 0.301 1,755 0.292 1,052 0.649
21aug 0.016 8,707 0.287 1,776 0.293 1,121 0.647
28aug 0.016 8,688 0.284 1,715 0.283 1,010 0.617
04sep 0.015 8,381 0.287 1,647 0.293 1,020 0.635
11sep 0.016 8,860 0.305 1,719 0.308 1,040 0.651
18sep 0.016 8,797 0.297 1,724 0.286 1,075 0.635
25sep 0.016 8,717 0.305 1,687 0.305 1,157 0.624
02oct 0.018 8,585 0.306 1,721 0.310 1,310 0.656
09oct 0.016 8,369 0.302 1,629 0.304 1,422 0.655
16oct 0.022 8,191 0.335 1,599 0.326 1,463 0.638
23oct 0.024 8,190 0.348 1,608 0.341 1,530 0.661
30oct 0.026 8,252 0.332 1,574 0.322 1,639 0.610
06nov 0.029 8,326 0.365 1,710 0.341 2,138 0.640
13nov 0.032 7,900 0.429 1,586 0.465 2,287 0.673
20nov 0.027 7,140 0.418 1,467 0.460 2,159 0.661
27nov 0.030 7,253 0.453 1,473 0.491 2,163 0.671
04dec 0.022 6,384 0.452 1,225 0.491 1,725 0.669
11dec 0.005 2,522 0.406 428 0.467 689 0.597

Notes: Table reports the weekly test rate for the population, and the number of hospitalizations and test
rate, by type of hospitalizations. (The population size is 6.64 million in all weeks.) ICLI hospitalizations
have at least one diagnosis for influenza-like or COVID-like illness. Clear cause hospitalizations are hos-
pitalizations for cancer, labor and delivery, AMI, stroke, fracture or crush, open wound, appendicitis, or
accidents (vehicle or other). See Appendix B for definitions.
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Table A.3: Weekly bounds on prevalence under test monotonicity, by sample, March-July

Sample Pop Non-ICLI Clear cause

Representatives assumption Hosp-M Hosp-I Hosp-M Hosp-I
Week (1) (2) (3) (4) (5)

13mar [0.0001, 0.097] [0.0001, 0.043] [0.0019, 0.043] [0.0001, 0.044] [0.0017, 0.044]
(0.0001, 0.105) (0.0001, 0.066) (0.0010, 0.066) (0.0001, 0.095) (0.0001, 0.095)

20mar [0.0003, 0.154] [0.0003, 0.112] [0.0139, 0.112] [0.0003, 0.110] [0.0107, 0.110]
(0.0003, 0.162) (0.0003, 0.140) (0.0108, 0.140) (0.0003, 0.157) (0.0063, 0.157)

27mar [0.0006, 0.166] [0.0006, 0.159] [0.0286, 0.159] [0.0006, 0.113] [0.0148, 0.113]
(0.0005, 0.173) (0.0005, 0.170) (0.0234, 0.170) (0.0005, 0.166) (0.0089, 0.166)

03apr [0.0006, 0.154] [0.0006, 0.131] [0.0238, 0.131] [0.0006, 0.083] [0.0135, 0.083]
(0.0006, 0.161) (0.0006, 0.157) (0.0190, 0.157) (0.0006, 0.151) (0.0083, 0.151)

10apr [0.0006, 0.149] [0.0006, 0.138] [0.0236, 0.138] [0.0006, 0.149] [0.0132, 0.149]
(0.0006, 0.155) (0.0006, 0.154) (0.0182, 0.154) (0.0006, 0.154) (0.0074, 0.154)

17apr [0.0008, 0.169] [0.0008, 0.051] [0.0115, 0.051] [0.0008, 0.026] [0.0054, 0.026]
(0.0008, 0.175) (0.0008, 0.065) (0.0091, 0.065) (0.0008, 0.048) (0.0027, 0.048)

24apr [0.0008, 0.137] [0.0008, 0.086] [0.0182, 0.086] [0.0008, 0.057] [0.0108, 0.057]
(0.0008, 0.142) (0.0008, 0.119) (0.0142, 0.119) (0.0008, 0.088) (0.0058, 0.088)

01may [0.0009, 0.122] [0.0009, 0.049] [0.0153, 0.049] [0.0009, 0.064] [0.0192, 0.064]
(0.0009, 0.127) (0.0009, 0.070) (0.0113, 0.070) (0.0009, 0.116) (0.0094, 0.116)

08may [0.0008, 0.096] [0.0008, 0.035] [0.0119, 0.035] [0.0008, 0.093] [0.0215, 0.093]
(0.0007, 0.100) (0.0007, 0.050) (0.0078, 0.050) (0.0007, 0.099) (0.0091, 0.099)

15may [0.0008, 0.099] [0.0008, 0.035] [0.0120, 0.035] [0.0008, 0.043] [0.0121, 0.043]
(0.0008, 0.102) (0.0008, 0.043) (0.0098, 0.043) (0.0008, 0.065) (0.0074, 0.065)

22may [0.0006, 0.087] [0.0006, 0.051] [0.0158, 0.051] [0.0006, 0.040] [0.0110, 0.040]
(0.0006, 0.090) (0.0006, 0.069) (0.0113, 0.069) (0.0006, 0.063) (0.0067, 0.063)

29may [0.0006, 0.073] [0.0006, 0.025] [0.0083, 0.025] [0.0006, 0.022] [0.0070, 0.022]
(0.0006, 0.076) (0.0006, 0.038) (0.0058, 0.038) (0.0006, 0.038) (0.0032, 0.038)

05jun [0.0006, 0.059] [0.0006, 0.022] [0.0073, 0.022] [0.0006, 0.021] [0.0064, 0.021]
(0.0006, 0.061) (0.0006, 0.028) (0.0055, 0.028) (0.0006, 0.035) (0.0023, 0.035)

12jun [0.0005, 0.045] [0.0005, 0.022] [0.0067, 0.022] [0.0005, 0.018] [0.0053, 0.018]
(0.0005, 0.047) (0.0005, 0.036) (0.0040, 0.036) (0.0005, 0.031) (0.0022, 0.031)

19jun [0.0006, 0.051] [0.0006, 0.014] [0.0047, 0.014] [0.0006, 0.016] [0.0046, 0.016]
(0.0005, 0.053) (0.0005, 0.018) (0.0032, 0.018) (0.0005, 0.029) (0.0013, 0.029)

26jun [0.0006, 0.060] [0.0006, 0.022] [0.0070, 0.022] [0.0006, 0.021] [0.0071, 0.021]
(0.0006, 0.062) (0.0006, 0.037) (0.0040, 0.037) (0.0006, 0.033) (0.0037, 0.033)

03jul [0.0007, 0.069] [0.0007, 0.015] [0.0049, 0.015] [0.0007, 0.033] [0.0088, 0.033]
(0.0007, 0.071) (0.0007, 0.026) (0.0030, 0.026) (0.0007, 0.067) (0.0027, 0.067)

10jul [0.0009, 0.067] [0.0009, 0.026] [0.0086, 0.026] [0.0009, 0.020] [0.0067, 0.020]
(0.0009, 0.069) (0.0009, 0.038) (0.0054, 0.038) (0.0009, 0.032) (0.0033, 0.032)

17jul [0.0010, 0.069] [0.0010, 0.011] [0.0041, 0.011] [0.0010, 0.012] [0.0042, 0.012]
(0.0010, 0.071) (0.0010, 0.015) (0.0029, 0.015) (0.0010, 0.021) (0.0016, 0.021)

24jul [0.0010, 0.072] [0.0010, 0.019] [0.0064, 0.019] [0.0010, 0.021] [0.0065, 0.021]
(0.0010, 0.074) (0.0010, 0.024) (0.0047, 0.024) (0.0010, 0.033) (0.0032, 0.033)

31jul [0.0011, 0.072] [0.0011, 0.034] [0.0104, 0.034] [0.0011, 0.052] [0.0110, 0.052]
(0.0010, 0.074) (0.0010, 0.052) (0.0067, 0.052) (0.0010, 0.073) (0.0041, 0.073)

Notes: Table reports weekly bounds on COVID prevalence in the indicated sample under test monotonicity,
as well as the indicated representativeness assumption. Hosp-M means hosptilalization monotonicity, and
Hosp-I means hospitalization independence. Hospitalized samples weighted to match the population age
distribution. See Table A.1 for sample definitions. Bounds are in brackets, 95% confidence intervals in
parentheses.
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Table A.4: Weekly bounds on prevalence under test monotonicity, by sample, August-
December

Sample Pop Non-ICLI Clear cause

Representatives assumption Hosp-M Hosp-I Hosp-M Hosp-I
Week (1) (2) (3) (4) (5)

07aug [0.0010, 0.067] [0.0010, 0.032] [0.0087, 0.032] [0.0010, 0.020] [0.0065, 0.020]
(0.0010, 0.068) (0.0010, 0.048) (0.0054, 0.048) (0.0010, 0.033) (0.0032, 0.033)

14aug [0.0010, 0.059] [0.0010, 0.022] [0.0070, 0.022] [0.0010, 0.059] [0.0173, 0.059]
(0.0010, 0.060) (0.0010, 0.033) (0.0043, 0.033) (0.0010, 0.060) (0.0079, 0.060)

21aug [0.0010, 0.060] [0.0010, 0.022] [0.0066, 0.022] [0.0010, 0.041] [0.0098, 0.041]
(0.0010, 0.062) (0.0010, 0.033) (0.0042, 0.033) (0.0010, 0.061) (0.0038, 0.061)

28aug [0.0010, 0.062] [0.0010, 0.016] [0.0052, 0.016] [0.0010, 0.012] [0.0035, 0.012]
(0.0010, 0.063) (0.0010, 0.021) (0.0038, 0.021) (0.0010, 0.022) (0.0013, 0.022)

04sep [0.0009, 0.057] [0.0009, 0.016] [0.0049, 0.016] [0.0009, 0.015] [0.0042, 0.015]
(0.0008, 0.058) (0.0008, 0.021) (0.0036, 0.021) (0.0008, 0.025) (0.0020, 0.025)

11sep [0.0009, 0.053] [0.0009, 0.016] [0.0053, 0.016] [0.0009, 0.014] [0.0043, 0.014]
(0.0009, 0.055) (0.0009, 0.025) (0.0032, 0.025) (0.0009, 0.022) (0.0021, 0.022)

18sep [0.0009, 0.058] [0.0009, 0.016] [0.0051, 0.016] [0.0009, 0.022] [0.0064, 0.022]
(0.0009, 0.059) (0.0009, 0.021) (0.0036, 0.021) (0.0009, 0.036) (0.0030, 0.036)

25sep [0.0012, 0.070] [0.0012, 0.019] [0.0064, 0.019] [0.0012, 0.018] [0.0061, 0.018]
(0.0011, 0.072) (0.0011, 0.024) (0.0046, 0.024) (0.0011, 0.029) (0.0026, 0.029)

02oct [0.0014, 0.081] [0.0014, 0.018] [0.0058, 0.018] [0.0014, 0.024] [0.0065, 0.024]
(0.0014, 0.083) (0.0014, 0.023) (0.0044, 0.023) (0.0014, 0.038) (0.0029, 0.038)

09oct [0.0017, 0.101] [0.0017, 0.027] [0.0086, 0.027] [0.0017, 0.021] [0.0072, 0.021]
(0.0016, 0.102) (0.0016, 0.040) (0.0064, 0.040) (0.0016, 0.031) (0.0038, 0.031)

16oct [0.0024, 0.110] [0.0024, 0.029] [0.0103, 0.029] [0.0024, 0.022] [0.0073, 0.022]
(0.0024, 0.111) (0.0024, 0.038) (0.0078, 0.038) (0.0024, 0.033) (0.0039, 0.033)

23oct [0.0031, 0.132] [0.0031, 0.030] [0.0115, 0.030] [0.0031, 0.047] [0.0154, 0.047]
(0.0031, 0.134) (0.0031, 0.037) (0.0095, 0.037) (0.0031, 0.070) (0.0102, 0.070)

30oct [0.0042, 0.162] [0.0042, 0.038] [0.0136, 0.038] [0.0042, 0.057] [0.0190, 0.057]
(0.0041, 0.163) (0.0041, 0.048) (0.0104, 0.048) (0.0041, 0.093) (0.0098, 0.093)

06nov [0.0055, 0.189] [0.0055, 0.056] [0.0213, 0.056] [0.0055, 0.069] [0.0230, 0.069]
(0.0054, 0.191) (0.0054, 0.067) (0.0180, 0.067) (0.0054, 0.090) (0.0170, 0.090)

13nov [0.0059, 0.181] [0.0059, 0.060] [0.0264, 0.060] [0.0059, 0.115] [0.0450, 0.115]
(0.0058, 0.183) (0.0058, 0.076) (0.0216, 0.076) (0.0058, 0.178) (0.0312, 0.178)

20nov [0.0052, 0.196] [0.0052, 0.080] [0.0352, 0.080] [0.0052, 0.160] [0.0519, 0.160]
(0.0052, 0.198) (0.0052, 0.099) (0.0287, 0.099) (0.0052, 0.197) (0.0322, 0.197)

27nov [0.0066, 0.225] [0.0066, 0.062] [0.0306, 0.062] [0.0066, 0.100] [0.0457, 0.100]
(0.0066, 0.227) (0.0066, 0.075) (0.0253, 0.075) (0.0066, 0.149) (0.0332, 0.149)

04dec [0.0047, 0.213] [0.0047, 0.048] [0.0243, 0.048] [0.0047, 0.060] [0.0299, 0.060]
(0.0046, 0.215) (0.0046, 0.056) (0.0206, 0.056) (0.0046, 0.078) (0.0214, 0.078)

11dec [0.0010, 0.195] [0.0010, 0.056] [0.0277, 0.056] [0.0010, 0.086] [0.0480, 0.086]
(0.0010, 0.199) (0.0010, 0.084) (0.0143, 0.084) (0.0010, 0.177) (0.0117, 0.177)

Notes: Table reports weekly bounds on COVID prevalence in the indicated sample under test monotonic-
ity, as well as the indicated representativeness assumption. Hospitalized samples weighted to match the
population age distribution. See Table A.1 for sample definitions. Bounds are in brackets, 95% confidence
intervals in parentheses.
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Table A.5: Weekly bounds on prevalence under test monotonicity, by sample, not age-
weighted, March-July

Sample Pop Non-ICLI Clear cause

Representatives assumption Hosp-M Hosp-I Hosp-M Hosp-I
Week (1) (2) (3) (4) (5)

13mar [0.0001, 0.111] [0.0001, 0.090] [0.0034, 0.090] [0.0001, 0.073] [0.0022, 0.073]
(0.0001, 0.120) (0.0001, 0.113) (0.0020, 0.113) (0.0001, 0.114) (0.0001, 0.114)

20mar [0.0003, 0.181] [0.0003, 0.159] [0.0189, 0.159] [0.0003, 0.174] [0.0149, 0.174]
(0.0003, 0.187) (0.0003, 0.184) (0.0155, 0.184) (0.0003, 0.186) (0.0089, 0.186)

27mar [0.0006, 0.197] [0.0006, 0.197] [0.0390, 0.197] [0.0006, 0.147] [0.0210, 0.147]
(0.0005, 0.202) (0.0005, 0.201) (0.0338, 0.201) (0.0005, 0.196) (0.0128, 0.196)

03apr [0.0006, 0.178] [0.0006, 0.162] [0.0331, 0.162] [0.0006, 0.163] [0.0259, 0.163]
(0.0006, 0.183) (0.0006, 0.180) (0.0285, 0.180) (0.0006, 0.182) (0.0170, 0.182)

10apr [0.0006, 0.168] [0.0006, 0.134] [0.0300, 0.134] [0.0006, 0.106] [0.0184, 0.106]
(0.0006, 0.173) (0.0006, 0.156) (0.0257, 0.156) (0.0006, 0.149) (0.0109, 0.149)

17apr [0.0009, 0.188] [0.0009, 0.085] [0.0194, 0.085] [0.0009, 0.058] [0.0126, 0.058]
(0.0008, 0.191) (0.0008, 0.101) (0.0154, 0.101) (0.0008, 0.088) (0.0070, 0.088)

24apr [0.0008, 0.147] [0.0008, 0.110] [0.0249, 0.110] [0.0008, 0.086] [0.0154, 0.086]
(0.0008, 0.150) (0.0008, 0.129) (0.0208, 0.129) (0.0008, 0.123) (0.0098, 0.123)

01may [0.0009, 0.126] [0.0009, 0.058] [0.0190, 0.058] [0.0009, 0.057] [0.0187, 0.057]
(0.0009, 0.129) (0.0009, 0.069) (0.0152, 0.069) (0.0009, 0.078) (0.0116, 0.078)

08may [0.0008, 0.098] [0.0008, 0.039] [0.0137, 0.039] [0.0008, 0.047] [0.0154, 0.047]
(0.0008, 0.100) (0.0008, 0.048) (0.0109, 0.048) (0.0008, 0.067) (0.0093, 0.067)

15may [0.0008, 0.094] [0.0008, 0.045] [0.0164, 0.045] [0.0008, 0.057] [0.0190, 0.057]
(0.0008, 0.097) (0.0008, 0.053) (0.0136, 0.053) (0.0008, 0.078) (0.0129, 0.078)

22may [0.0006, 0.084] [0.0006, 0.047] [0.0162, 0.047] [0.0006, 0.053] [0.0164, 0.053]
(0.0006, 0.086) (0.0006, 0.055) (0.0132, 0.055) (0.0006, 0.074) (0.0107, 0.074)

29may [0.0006, 0.069] [0.0006, 0.029] [0.0102, 0.029] [0.0006, 0.027] [0.0090, 0.027]
(0.0006, 0.071) (0.0006, 0.036) (0.0079, 0.036) (0.0006, 0.042) (0.0050, 0.042)

05jun [0.0006, 0.056] [0.0006, 0.026] [0.0092, 0.026] [0.0006, 0.028] [0.0087, 0.028]
(0.0006, 0.058) (0.0006, 0.032) (0.0072, 0.032) (0.0006, 0.042) (0.0047, 0.042)

12jun [0.0005, 0.041] [0.0005, 0.018] [0.0064, 0.018] [0.0005, 0.023] [0.0070, 0.023]
(0.0005, 0.042) (0.0005, 0.024) (0.0046, 0.024) (0.0005, 0.036) (0.0035, 0.036)

19jun [0.0006, 0.049] [0.0006, 0.017] [0.0062, 0.017] [0.0006, 0.015] [0.0049, 0.015]
(0.0006, 0.050) (0.0006, 0.022) (0.0044, 0.022) (0.0006, 0.027) (0.0019, 0.027)

26jun [0.0006, 0.058] [0.0006, 0.020] [0.0070, 0.020] [0.0006, 0.031] [0.0103, 0.031]
(0.0006, 0.060) (0.0006, 0.025) (0.0051, 0.025) (0.0006, 0.046) (0.0058, 0.046)

03jul [0.0007, 0.067] [0.0007, 0.015] [0.0052, 0.015] [0.0007, 0.026] [0.0084, 0.026]
(0.0007, 0.069) (0.0007, 0.020) (0.0037, 0.020) (0.0007, 0.041) (0.0037, 0.041)

10jul [0.0009, 0.067] [0.0009, 0.020] [0.0074, 0.020] [0.0009, 0.024] [0.0082, 0.024]
(0.0009, 0.069) (0.0009, 0.026) (0.0056, 0.026) (0.0009, 0.037) (0.0041, 0.037)

17jul [0.0010, 0.069] [0.0010, 0.017] [0.0061, 0.017] [0.0010, 0.020] [0.0066, 0.020]
(0.0010, 0.071) (0.0010, 0.022) (0.0044, 0.022) (0.0010, 0.032) (0.0030, 0.032)

24jul [0.0010, 0.072] [0.0010, 0.027] [0.0093, 0.027] [0.0010, 0.039] [0.0119, 0.039]
(0.0010, 0.073) (0.0010, 0.034) (0.0073, 0.034) (0.0010, 0.057) (0.0072, 0.057)

31jul [0.0011, 0.071] [0.0011, 0.028] [0.0100, 0.028] [0.0011, 0.035] [0.0110, 0.035]
(0.0010, 0.073) (0.0010, 0.034) (0.0078, 0.034) (0.0010, 0.049) (0.0063, 0.049)

Notes: Table reports weekly bounds on COVID prevalence in the indicated sample under test monotonicity,
as well as the indicated representativeness assumption. See Table A.1 for sample definitions. Bounds are in
brackets, 95% confidence intervals in parentheses.
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Table A.6: Weekly bounds on prevalence under test monotonicity, by sample, not age-
weighted, August-December

Sample Pop Non-ICLI Clear cause

Representatives assumption Hosp-M Hosp-I Hosp-M Hosp-I
Week (1) (2) (3) (4) (5)

07aug [0.0011, 0.067] [0.0011, 0.023] [0.0079, 0.023] [0.0011, 0.030] [0.0098, 0.030]
(0.0010, 0.069) (0.0010, 0.029) (0.0059, 0.029) (0.0010, 0.046) (0.0054, 0.046)

14aug [0.0010, 0.061] [0.0010, 0.023] [0.0077, 0.023] [0.0010, 0.047] [0.0137, 0.047]
(0.0010, 0.062) (0.0010, 0.029) (0.0058, 0.029) (0.0010, 0.061) (0.0087, 0.061)

21aug [0.0010, 0.064] [0.0010, 0.022] [0.0071, 0.022] [0.0010, 0.031] [0.0090, 0.031]
(0.0010, 0.065) (0.0010, 0.027) (0.0054, 0.027) (0.0010, 0.046) (0.0054, 0.046)

28aug [0.0010, 0.066] [0.0010, 0.022] [0.0069, 0.022] [0.0010, 0.021] [0.0058, 0.021]
(0.0010, 0.068) (0.0010, 0.028) (0.0051, 0.028) (0.0010, 0.033) (0.0024, 0.033)

04sep [0.0009, 0.060] [0.0009, 0.023] [0.0075, 0.023] [0.0009, 0.025] [0.0073, 0.025]
(0.0009, 0.061) (0.0009, 0.030) (0.0058, 0.030) (0.0009, 0.040) (0.0035, 0.040)

11sep [0.0009, 0.055] [0.0009, 0.019] [0.0064, 0.019] [0.0009, 0.030] [0.0093, 0.030]
(0.0009, 0.056) (0.0009, 0.023) (0.0048, 0.023) (0.0009, 0.046) (0.0052, 0.046)

18sep [0.0009, 0.059] [0.0009, 0.021] [0.0071, 0.021] [0.0009, 0.032] [0.0093, 0.032]
(0.0009, 0.061) (0.0009, 0.027) (0.0052, 0.027) (0.0009, 0.049) (0.0047, 0.049)

25sep [0.0012, 0.072] [0.0012, 0.024] [0.0082, 0.024] [0.0012, 0.031] [0.0095, 0.031]
(0.0011, 0.073) (0.0011, 0.031) (0.0062, 0.031) (0.0011, 0.048) (0.0052, 0.048)

02oct [0.0015, 0.082] [0.0015, 0.026] [0.0090, 0.026] [0.0015, 0.032] [0.0099, 0.032]
(0.0014, 0.084) (0.0014, 0.033) (0.0071, 0.033) (0.0014, 0.047) (0.0053, 0.047)

09oct [0.0017, 0.102] [0.0017, 0.034] [0.0115, 0.034] [0.0017, 0.051] [0.0154, 0.051]
(0.0016, 0.104) (0.0016, 0.042) (0.0094, 0.042) (0.0016, 0.070) (0.0095, 0.070)

16oct [0.0024, 0.111] [0.0024, 0.038] [0.0140, 0.038] [0.0024, 0.046] [0.0150, 0.046]
(0.0024, 0.113) (0.0024, 0.046) (0.0115, 0.046) (0.0024, 0.064) (0.0097, 0.064)

23oct [0.0032, 0.134] [0.0032, 0.047] [0.0181, 0.047] [0.0032, 0.069] [0.0237, 0.069]
(0.0031, 0.135) (0.0031, 0.055) (0.0148, 0.055) (0.0031, 0.091) (0.0165, 0.091)

30oct [0.0042, 0.164] [0.0042, 0.043] [0.0161, 0.043] [0.0042, 0.067] [0.0217, 0.067]
(0.0042, 0.165) (0.0042, 0.052) (0.0132, 0.052) (0.0042, 0.088) (0.0145, 0.088)

06nov [0.0055, 0.191] [0.0055, 0.071] [0.0288, 0.071] [0.0055, 0.105] [0.0358, 0.105]
(0.0055, 0.193) (0.0055, 0.080) (0.0253, 0.080) (0.0055, 0.132) (0.0272, 0.132)

13nov [0.0059, 0.184] [0.0059, 0.066] [0.0317, 0.066] [0.0059, 0.114] [0.0532, 0.114]
(0.0058, 0.186) (0.0058, 0.074) (0.0278, 0.074) (0.0058, 0.139) (0.0436, 0.139)

20nov [0.0053, 0.198] [0.0053, 0.093] [0.0442, 0.093] [0.0053, 0.116] [0.0534, 0.116]
(0.0052, 0.200) (0.0052, 0.103) (0.0387, 0.103) (0.0052, 0.139) (0.0420, 0.139)

27nov [0.0067, 0.227] [0.0067, 0.084] [0.0426, 0.084] [0.0067, 0.142] [0.0703, 0.142]
(0.0066, 0.229) (0.0066, 0.093) (0.0375, 0.093) (0.0066, 0.169) (0.0577, 0.169)

04dec [0.0047, 0.214] [0.0047, 0.068] [0.0344, 0.068] [0.0047, 0.108] [0.0534, 0.108]
(0.0047, 0.216) (0.0047, 0.077) (0.0298, 0.077) (0.0047, 0.133) (0.0412, 0.133)

11dec [0.0010, 0.196] [0.0010, 0.051] [0.0228, 0.051] [0.0010, 0.085] [0.0399, 0.085]
(0.0010, 0.201) (0.0010, 0.064) (0.0177, 0.064) (0.0010, 0.120) (0.0219, 0.120)

Notes: Table reports weekly bounds on COVID prevalence in the indicated sample under test monotonicity,
as well as the indicated representativeness assumption. See Table A.1 for sample definitions. Bounds are in
brackets, 95% confidence intervals in parentheses.
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Table A.7: Demographics and test rates among hospitalized patients, by group

Number of Age

Group Admissions Female Newborn 0-17 18-29 30-49 50-64 65-74 >74

All 781,587 0.555 0.080 0.028 0.105 0.181 0.228 0.182 0.196
Has diagnosis 355,425 0.557 0.100 0.026 0.112 0.178 0.214 0.173 0.198
ICLI 49,904 0.493 0.005 0.023 0.037 0.139 0.269 0.239 0.287
Non-ICLI 305,521 0.568 0.115 0.027 0.124 0.184 0.205 0.162 0.183
Clear cause 61,682 0.592 0.003 0.033 0.165 0.175 0.195 0.179 0.249
Cancer 9,585 0.465 0.001 0.053 0.026 0.122 0.322 0.284 0.192
Labor/delivery 13,304 0.995 0.009 0.023 0.611 0.357 0.000 0.000 0.000
AMI 8,624 0.405 0.000 0.000 0.007 0.112 0.315 0.265 0.301
Stroke 8,297 0.487 0.001 0.004 0.011 0.092 0.269 0.256 0.368
Fracture 13,718 0.546 0.003 0.034 0.063 0.128 0.178 0.187 0.408
Open wound 3,642 0.420 0.002 0.047 0.097 0.197 0.224 0.167 0.266
Appendicitis 1,961 0.465 0.000 0.224 0.199 0.274 0.181 0.084 0.038
Vehicle accident 1,944 0.356 0.001 0.090 0.216 0.297 0.195 0.119 0.082
Other accident 9,782 0.541 0.003 0.033 0.034 0.082 0.154 0.208 0.486

Notes: Table reports the number and age distribution of admissions, for different categories of admissions,
over the time period March 13, 2020 through June 18, 2020. See Appendix B for definitions of the different
causes of admissions (Cancer-other accident).
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B Defining causes of admissions

This section provides more details on our definition of ICLI, non-ICIL, and “clear

cause” hospitalization, listing the ICD-10 codes used to define each.

Following Armed Forces Health Surveillance Center (2015), the codes for influenza-

like illness are B97.89, H66.9, H66.90, H66.91 H66.92, H66.93, J00, J01.9, J01.90, J06.9, J09,

J09.X, J09.X1, J09.2, J09.X3, J09.X9, J10, J10.0, J10.00, J10.01, J10.08, J10.1, J10.2, J10.8, J10.81,

J10.82, J10.83, J10.89, J11, J11.0, J11.00, J11.08, J11.1, J11.2, J11.8, J11.81, J11.82, J11.83, J11.89,

J12.89, J12.9, J18, J18.1, J18.8, J18.9, J20.9, J40, R05, and R50.9. We say a hospitalizaiton is

for an influenza-like illness if it has any of these diagnosis codes in any position. We say

a hospitalization is for a COVID-like illness if it has any ICD-10 code among those that is

among the CDC’s lists of diagnosis codes for COVID-19 Center for Disease Control and

Prevention (2020). These codes are J12.89, J20.8, J22, J40, J80, J98.8, O95.5, R05, R06.02,

R50.9, U07.1, Z03.818, Z11.58, and Z20.828.

We define ICLI-related hospitalizations as ones with at least one ILI or CLI diagnosis

code. We define non-ICLI related hospitalizations as hospitalized with diagnosis codes,

but no ILI or CLI code.

We also define “clear cause” hospitalizations. These are hospitalizations for labor and

delivery, AMI, stroke, fractures and crushes, wounds, vehicle accidents, other accidents,

appendicitis, or cancer. With the exception of cancer, we define a hospitalization as be-

longing to one of these groups if it has any diagnosis codes for that group, listed below.

Cancer is treated differently because it can be a comorbidity. We say a hospitalization is

for cancer if a cancer diagnosis (listed below) is an admitting diagnosis, the primary final

10



diagnosis, or if chemotherapy diagnosis is present. We use the following ICD-10 codes.

• AMI I21, I22.

• Appendicitis K35-K38.

• Cancer C00-C97 (in primary or admitting diagnosis), or Z51.0-Z51.2 (in any posi-

tion).

• Fracture/Crush S02, S12, S22, S32, S42, S52, S62, S72, S82, S92, T02, S07, S17, S37,

S47, S57,S67, S77, S87, S97, T07.

• Labor and delivery O60-O75, O80-O84.

• Other accidents W00-W99, X00-X59.

• Stroke I61-I64.

• Vehicle accident V01-V99.

• Wound S01, S11, S21, S31, S41, S51, S61, S71, S81, S91, T01.

11



C Calculating negative predictive values with test-retest

data

Setup and identification Here we show how to use data on multiple tests to simulta-

neously identify prevalence and test error rates, and how to use this information to obtain

the negative predictive value (NPV) of at test under a narrow set of assumptions. Assume

in particular that people have been tested exactly twice, with R1i the outcome of the first

test and R2i the outcome of the second test for person i. Let Ci be person i’s true infection

status, which we assume is fixed between the tests. Let p = Pr(Ci = 1) be the prevalence

of active SARS-CoV-2 infections in this twice-tested population.

Test outcomes may differ from true infection status because of test errors. In general,

therefore, there are four possible sequences of test outcomes: (0, 0), (0, 1), (1, 0), (1, 1). We

let Pab = Pr(R1i = a,R2i = b) for (a, b) ∈ {0, 1}2.

We make three strong assumptions to simplify the analysis.

Assumption 4. The specificity of the test is 1. That is, β = Pr(Rji = 0|Ci = 0) = 1.

Assumption 5. The sensitivity of the test, α = Pr(Rji = 1|Ci = 1), does not depend on the

initial test result.

Assumption 6. Retesting is random, i.e. independent of R1i and Ci.

Assumption 4 is the weakest of these assumptions. It implies that there are no false

positives, which is consistent with typical practice (UCSF Health Hospital Epidemiology

and Infection Prevention, 2020). The remaining assumptions are stronger. Assumption

5 says that the test errors are independent of the initial test result. It would be violated,
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for example, if false negatives are more common for patients with high levels of mucus,

and mucus levels are correlated across test results. Assumption 6 says that retesting rates

do not depend on possible testing errors. We would expect this condition to fail if highly

symptomatic people with negative tests are especially likely to test negative. We view

this assumption as the most suspect.

Under these assumptions, the test outcome probabilities Pab simplify considerably.

Since the probabilities sum to one, and the assumptions imply that P10 = P01, the only

non-redundant probabilities are:

P00 = (1− p) + p(1− α)2

P11 = pα2.

We can observe P00 and P11. Solving for the unknowns p and α, we have

p =
(P00 − P11 − 1)2

4P11

α =
2P11

1− P00 + P11

This shows how to get p and α from two tests, and the assumption that specificity (β)

equals 1. Our goal is to find the negative predictive value (NPV), which can be computed

given knowledge of α, β and p. In general, for a single test NPV = Pr(Ci = 0|Ri = 0).

Applying Bayes rule shows that:
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NPV =
1− p

p(1− α) + (1− p)

Results To implement this approach, we construct a sample of all people who are

tested on a given day, not tested the previous day, and then tested again in the next day.

There are 835,195 such test pairs. We find P00 = 0.884 and P11 = 0.113. Nearly all the

mass is on the diagonals; test results switch less than 1% of the time. This fact, together

with the assumption that specificity is equal to 1, implies very low false negative rates.

Plugging these values into our formula, we have p = 0.116 and α = 0.987, which implies

NPV = 0.998. Using instead, all people who are retested once within a three day period,

we find similar results: p = 0.118, α = 0.972, NPV = 0.996.

We emphasize that these estimates are valid for the twice-tested population and under

assumptions 4-6, in particular, random retesting. The prevalence estimate is the preva-

lence among people tested twice, not the population prevalence. And it is only a valid

estimate under assumptions 1-3. In reality, it is likely that retests are most common among

suspected false negatives (i.e. when a highly symptomatic patient tests negative). We see

some evidence for this: P01 = 0.0013 and P10 = 0.0016, a slight but significant differ-

ence implying that negative-then-positive is slightly more common than positive-than-

negative, inconsistent with the random retesting assumption. We therefore do not view

our estimates of prevalence and sensitivity as definitive; rather we think of the sensitivity

estimate as a lower bound on sensitivity, because we have selected a retest sample which

has a disproportionate number of false negatives. As NPV is increasing in sensitivity, α,

our implied estimate of 1−NPV is likely an upper bound on 1−NPV .
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D Measurement Error In Testing

Virological tests for the presence of SARS-CoV-2 may not be perfectly accurate, and

so far there are no detailed studies of the performance of the PCR tests that Indiana is

using to test people for SARS-CoV-2. To clarify how error-ridden tests complicate our

prevalence estimates, we augment the notation to distinguish between test results and

virological status. We continue to use Cit and Dit to represent a person’s true infection

and testing status at date t. But now we introduce Rit, which is a binary measure set

to 1 if the person tests positive and 0 if the person tests negative. Using this notation,

Pr(Cit = 1|Dit = 1, Rit = 1) is called the Positive Predictive Value (PPV) of the test among

people who are tested and who test positive. Pr(Cit = 0|Dit = 1, Rit = 0) is called the

Negative Predictive Value (NPV) among people who are tested and who test negative.

1 − NPV = Pr(Cit = 1|Dit = 1, Rit = 0) is the fraction of people who test negative who

are actually infected with SARS-CoV-2.

Our initial worst case bounds assumed no test errors. Relaxing that assumption yields

a different set of upper and lower bounds on prevalence. Following Manski and Molinari

(2020), we assume that (i) PPV = 1 so that none of the positive tests are false, but (ii)

Pr(Cit = 1|Dit = 1, Rit = 0) ∈ [λl, λu]. The second condition imposes a bound on 1−NPV ,

which is the fraction of people who test negative who are actually infected. Under these

two restrictions, the new worst case bounds work out to:

Lw,λ = Lw + λlPr(Rit = 0|Dit = 1)Pr(Dit = 1)

Uw,λ = Uw + λuPr(Rit = 0|Dit = 1)Pr(Dit = 1)
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Allowing for test errors increases the worst case lower bound by the best-case frac-

tion of missing positives, and increases the worst case upper bound by the worst-case

fraction of missing positives. Similar expressions hold for prevalence bounds under test

monotonicity and other independence assumptions.

The upshot is that knowledge of test accuracy is important for efforts to learn about

prevalence. In their study of the cumulative prevalence of SARS-CoV-2 infections, Manski

and Molinari (2020) computed upper and lower bounds on prevalence under the assump-

tion that λl = .1 and λu = .4, citing Peci et al. (2014). Manski and Molinari (2020) view this

choice of .1 ≤ 1 − NPV ≤ .4 as an expression of scientific uncertainty about test errors,

and they refer to the resulting prevalence bounds as “illustrative.” However, the structure

of the test error bounds makes it clear that assumptions about the numerical magnitude

of test errors have inferential consequences. For example, setting λu = .4 implies that,

regardless of the outcome of the test, at least 40 percent of the people who are tested for

SARS-CoV-2 are infected.

Although there is little published evidence on the properties of the SARS-CoV-2 PCR

test, previous research suggests that PCR test errors are uncommon in other settings. For

example, Peci et al. (2014) study the performance of rapid influenza tests using PCR-based

tests as a gold standard. PCR tests are used as a gold standard because they are expected

to have very high PPV and NPV.

To shed more light on test errors, we constructed a sample of people who are tested

and retested in a short interval, specifically people who were (i) tested on day t, (ii) not

tested on day t− 1, and (iii) were tested again on day t+ 1. We show in Appendix C how

these data can be used to estimate error rates, under assumptions of random retesting
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and no false positives. Our data include 835,000 test-retest events. Using R1i and R2i to

represent the results of a person’s first and second test, we found that Pr(R1i = 1, R2i =

1) = .11 and Pr(R1i = 0, R2i = 0) = .88 among the people in the twice-tested sample.

The two tests were discordant for less than 1 percent of the twice-tested sample. These

results imply a negative predictive value of 99.8 percent.

This estimate of NPV depends on our assumptions of random retesting and no false

positives. While the no false positive assumption appears plausible, random retesting is

not necessarily satisfied. In particular, a patient with a suspected COVID case who ini-

tially tests negative may be retested; this selective retesting would bias us towards finding

false negatives. Another reason for retesting is delays in processing results. If a patient

was tested prior to a planned hospitalization, and the result is not available at the time of

the hospitalization, the attending physician may order an in-hospital test, which would be

available within hours. This type of retesting is less likely to lead to bias. As we explain

in Appendix C, we can test for selection into retesting by looking for symmetry in test

results. Under random retesting (and no false positives), the sequences “positive-then-

negative” and “negative-then-positive” should be equally likely. In practice we find that

“negative-then-positive” is slightly more common, meaning that our test-retest sample

likely disproportionately selects people with initial false negatives.

Overall, we think that a plausible value for λl is nearly zero, and a plausible value

for λu is 0.005. Accounting for test errors in this range would have almost no effect on

the upper and lower bounds reported in the paper. Test-retest data are potentially in-

formative about test errors, but a limitation of is that retested people are not necessarily

representative of the population.
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E Small bias from excluding ICLI-hospitalizations

Our main sample uses non-ICLI hospitalizations to bound COVID prevalence in the

general population. This approach therefore yields bounds on the prevalence of non-

severe COVID-19, where “non-severe” means “not severe enough to induce a COVID-

related hospitalization.” These bounds are of course biased for bounds on overall COVID-

19 prevalence. However this bias is quite small, small enough that it is unlikely to be

decision relevant. We show this in two separate arguments.

To begin we abuse notation slightly and let H in this section be an indicator for an

ICLI-related hospitalization, rather than any hospitalization. Both arguments start from

the observation that COVID prevalence is equal to COVID prevalence among the hospi-

talized population plus its prevalence among the unhospitalized population:

Pr(C = 1) = Pr(C = 1, H = 1) + Pr(C = 1, H = 0).

Since our main sample is limited to non-ICLI hospitalizations, our bounds can be inter-

preted as bounds on Pr(C = 1, H = 0), and the bias is (at most) the bias from omitting

Pr(C = 1, H = 1).

E.1 Argument from rarity of ICLI-related hospitalizations

Our first argument that this bias is small is to observe that Pr(C = 1, H = 1) ≤

Pr(H = 1). That is, the overall rate of ICLI-related hospitalizations in the population is

an upper bound on the fraction of people in the population who are COVID-19 positive
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and have an ICLI-related hospitalization. Fortunately, Pr(H = 1) is nearly observable in

our data.

In particular, we don’t quite observe Pr(H = 1) because not all hospitals report di-

agnosis information. We can therefore bound Pr(H = 1) by assuming that when di-

agnosis information is not reported, H = 1. Taking this approach, Figure E.1 shows

Pr(H = 1) in our data. This is the weekly count of ICLI-related hospitalizations, scaled

by the population of Indiana. An alternative approach, also shown in Figure E.1 is to

measure ICLI-related hospitalizations as the total number of hospitalizations, scaled by

the share of ICLI-related hospitalizations among hospitalizations with diagnoses. We see

that Pr(H = 1) is always less than 0.3%, typically less than 0.2%, using the more conser-

vative bound. Thus the population prevalence of COVID-19 exceeds our upper bound by

at most 0.3%. A more precise estimate of the bias uses the estimated Pr(H = 1) from ob-

served diagnoses, about 0.05 percent, and uses Figure 3 to infer that Pr(C = 1|H = 1) is

typically less than 50 percent, and so the bias from excluding ICLI related hospitalizations

is likely less than 0.025 percent, that is, about 1700 cases out of a population of 6.8 million.

Reassuringly, this number is similar to the average reported COVID-19 hospitalizations

in the state of Indiana in 2020 (Indiana State Department of Health, 2020).13

E.2 Argument from low infection hospitalization rate

A second argument shows, similarly, that there is little bias from conditioning on ICLI-

unrelated hospitalizations. This argument is based on the fact that the infection hospital-

13 Because hospitalizations last a few days, our weekly admission count is comparable to the state’s daily
count of then umber of people in the hospital.
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ization rate, Pr(H = 1|C = 1), is known to be low.

After substituting Pr(H = 1|C = 1)Pr(C = 1) for Pr(C = 1, H = 1) in the equation

above, and a bit of algebra, we have

Pr(C = 1)
Pr(C = 1, H = 0)

1− Pr(H = 1|C = 1)
.

By focusing on ICLI-unrelated hospitalizations, we bound the numerator. The expression

above shows that our bound is off by a factor of at most (1 − Pr(H = 1|C = 1))−1. If

Pr(H = 1|C = 1) were known to be low, then the bias in our bound would be low as well.

The available evidence indicates that the infection hospitalization rate – Pr(H = 1|C =

1) – is small, not more than 10 percent in unvaccinated populations, and likely smaller.

Menachemi et al. (2021) estimate 2.1 percent in Indiana (excluding nursing homes) and

Mahajan et al. (2021) estimate 7 percent in Connecticut, both using random sample testing

to establish population prevalence and treating the number of hospitalizations as known.

Salje et al. (2020) estimate 2.9 percent, using a model-driven approach. All estimates

imply that our upper bound is too low by, at most, 7.5 (1/.93) percent (we emphasize:

percent, not percentage point). As our upper bound is usually less than 5 percent, we are

left with a bias of, at most, .4 percentage points.
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Figure E.1: Estimate ICLI-related hospitalizations as a share of the population, by week
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Notes: Figure plots, for each week, two estimates of the share of the population of Indiana admitted for
an ICLI-related hospitalization. Not all hospitals report diagnosis information, so the upper bound as-
sumes hospitalizations are ICLI-related if the diagnosis information is unreported. The “based on observed
diagnosis” line assumes that the share of ICLI-related hospitalizations among the hospitals with missing
diagnosis information is equal to their share among the hospitals with reported information.
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F Inference and age adjustment details

F.1 Inference for Intersection Bounds

The sample analogue estimators we use to construct the test monotonicity, hospital

monotonicity, and hospital independence bounds reported in the paper are all asymptot-

ically consistent. However, the hospital monotonicity and hospital independence bounds

are examples of “intersection bounds”. The sample analogue estimators are asymptoti-

cally consistent but their sampling distribution is somewhat complicated and the point

estimates may include finite sample bias because the minimum and maximum operators

are non-linear.

To understand the finite sample bias of the intersection bounds, consider the upper

bound on population prevalence under under test monotonicity and hospital monotonic-

ity:

UmH = min {Pr(C = 1|D = 1), P r(C = 1|D = 1, H = 1)}

= min {Population test positivity,Hospitalized test positivity} .

We estimate this bound by using the sample analogs of Pr(C = 1|D = 1) and Pr(C =

1|D = 1, H = 1), say P̂ (C = 1|D = 1) and P̂ (C = 1|D = 1, H = 1). Because the minimum

operator is not linear, E[UmH ] is not equal to the minimum of the two expectations. Sup-

pose for illustration that, in the population, Pr(C = 1|D = 1, H = 1) < Pr(C = 1|D = 1),

so that the hospital test positivity binds. In that case, finite sample bias may arise because

in any given random sample, there is a positive probability that P̂ (C = 1|D = 1) < P̂ (C =
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1|D = 1, H = 1). But if this probability is small, then so is the bias.

We using the bootstrap method described in Manski and Pepper (2009); Kreider and

Pepper (2007) to estimate confidence intervals for the test monotonicity, hospital mono-

tonicity, and hospital independence bounds and to assess concerns about finite sample

bias in the hospital monotonicity and hospital independence bounds.

We use 500 bootstrap simulations. In each bootstrap replication we formed each set of

bounds. We used percentiles of the bootstrap distribution of the upper and lower bounds

to form a 95 percent confidence interval around the identified set. The lower bound of the

95 percent confidence interval is the 2.5th percentile of the bootstrapped lower bounds,

and the upper bound of the 95 percent confidence interval is the 97.5th percentile of the

upper bounds.

We also used the bootstrap to estimate the degree of finite sample bias associated with

the hospital monotonicity and hospital independence bounds. We estimate the finite sam-

ple bias as the difference between the average estimate in the bootstrap sample and the

actual point estimate in the full sample. Table F.1 shows bootstrap estimates of the bias

in the upper bound under test monotonicity and hospitalization monotonicity applied to

the non-ICLI hospitalized population. The bootstrap results suggest that the finite sample

bias is negligible in our application. The estimated bias is less than 1 percent (not percent-

age point) in most weeks. It makes sense that the bias is small because the sample size in

our analysis is very large, and also because there is such a large gap between population

test positivity and hospitalized test positivity. The results is that there is a low probabil-

ity across bootstraps that P̂ (C = 1|D = 1) < P̂ (C = 1|D = 1, H = 1). We show this

probability week-by-week in Figure F.1. In the first month of the sample there is a non
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trivial probability – 10-30% – that the inequality does not hold in a given random sample.

After mid-April, however, this probability becomes essentially zero in every week. Ac-

cordingly, finite sample bias is not an important worry in our application and we do not

attempt to correct our point estimates or confidence intervals for finite sample bias.

F.2 Age Adjustment

Because the tested and hospitalized samples are not age representative of the general

population, throughout the paper, we report both unadjusted results and age-standardized

upper and lower bounds. This simply means that we stratify the data six age groups ( 0-

17, 18-30, 30-50, 50-64, 65-74, and 75 and older) and then compute the upper and lower

bounds within each age-strata. Afterwards, we average the age group specific bounds

by weighting each age-specific bound by that age group’s share of the Indiana popula-

tion. We construct confidence intervals for the age-adjusted bounds using the bootstrap;

in each bootstrap iteration we calculate the age-adjusted bound or intersection bound (as

appropriate), and our confidence intervals for the bound are the 2.5th percentile of the

lower bound confidence interval and the 97.5th percentile of the upper bound confidence

interval.
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Table F.1: Small bias in intersection bounds
Upper bound Bias Bias/bound

mean 0.044 -0.000 -0.003
min 0.011 -0.005 -0.037
p25 0.020 -0.000 -0.009
p50 0.031 -0.000 -0.002
p75 0.053 0.000 0.004
max 0.159 0.001 0.016

Notes: Table reports statistics on the estimated upper bound (under test monotonicity and hospitalization
monotonicity applied to the non-ICLI hospitalization), the bias in the upper bound, and the ratio of the bias
to the bound. These statistics vary across weeks in the sample. All bounds are age-adjusted. We estimate
the bias as the difference between the average estimate in the bootstrap samples and the actual estimate.
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Figure F.1: Estimated probability that P̂ (C = 1|D = 1) < P̂ (C = 1|D = 1, H = 1), by
week
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Notes: Figure shows the estimated probability, for each week, that P̂ (C = 1|D = 1) < P̂ (C = 1|D = 1, H =
1), estimated using a bootstrap. All bounds are age-adjusted.
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G Validity Tests

Our main results show that the test monotonicity bounds on prevalence are much

tighter for the non-ICLI hospitalized population than for the population as a whole. These

tighter bounds are informative for general population prevalence only under additional

assumptions about hospital representativeness, either a monotonicity assumption or an

equal prevalence assumption. How valid are these assumptions? Assessing them directly

is of course impossible because we lack data on prevalence in the population as a whole

or in the hospital sample.

Our main analysis provides one type of indirect evidence in support of our hospital

representativeness assumptions. The non-ICLI and clear-cause samples generate simi-

lar bounds, and, within the clear-cause sample, there are not large differences in bounds

across different causes of admission. This suggests that prevalence does not vary with the

exact set of hospitalizations studied, although of course this does not prove hospitaliza-

tion monotonicity or hospitalization independence are credible assumptions.

In this section, we provide two additional pieces of evidence on the hospital IV as-

sumptions. First we show that the hospital bounds are consistent with the estimates of

population prevalence from the Indiana COVID-19 Random Sample Study (Menachemi

et al., 2020; Richard M. Fairbanks School of Public Health, 2020).14 Second, we compare

the hospital sample to the general population in terms of their likelihood of prior testing

(prior to the hospital data) and the test rate of their home counties. We take these to be

proxies for their concern about COVID, although other interpretations are possible.

14 Our data do not contain the test results from the Random Sample Study, so we compare our bounds to
the published results.
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G.1 Comparison to random sample testing

A valuable benchmark for the hospital-based prevalence bounds comes from a large-

scale study of SARS-CoV-2 prevalence in Indiana. The study invited a representative

sample of Indiana residents (aged 12 and older) to obtain a SARS-CoV-2 test. The first

wave of the study took place April 25-29, and the second wave took place June 3-7. The

preliminary results are reported in Menachemi et al. (2020) and Richard M. Fairbanks

School of Public Health (2020). The response rate was roughly 25 percent, and no attempt

was made to correct for non-random response. Nonetheless this survey appears to be

the best benchmark available. We report the point estimates for prevalence (assuming

random nonresponse) and their confidence intervals in the top panel of Table G.1. The

first wave estimates 1.7 percent prevalence and the second 0.5 percent.15

We compare our prevalence bound during the weeks containing the random sample

survey, in the bottom panel of the table. Using population testing we obtain very wide

bounds that contain the random sample study estimates. This fact provides some support

for the test monotonicity assumption. Under our hospital representativeness assump-

tions, the bounds are tighter, especially in June. Our bounds under hospital monotonicity

always contain the random sample study point etimates. Under hospital independence,

the point estimate lies slightly below the lower bound. However the 95% confidence in-

terval always overlap. Thus for both dates the prevalence point estimates are consistent

with the bounds we obtain under our hospital representativeness assumptions.

15 The estimates in Table G.1 are slightly different from those reported by Richard M. Fairbanks School of
Public Health (2020). We report updated calculations, based on correspondence with the authors.
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Table G.1: Do our bounds contain estimates of prevalence from random-sample testing?

Time period April 25-29 June 3 -7

Random Sample Study
Prevalence estimates 0.0170 0.005
95% confidence interval (0.011, 0.025) (0.002, 0.013)

Bounds from...
Population testing [0.0008, 0.137] [0.0006, 0.059]

(0.0008, 0.142) (0.0006, 0.061)

(0.0008, 0.001) (0.0006, 0.001)
Non-ICLI hospitalizations (H-M) [0.0008, 0.086] [0.0006, 0.022]

(0.0008, 0.119) (0.0006, 0.028)

(0.0008, 0.118) (0.0006, 0.028)
Non-ICLI hospitalizations (H-I) [0.0182, 0.086] [0.0073, 0.022]

(0.0142, 0.119) (0.0055, 0.028)

(-0.0551, 0.118) (-0.0087, 0.028)
Clear cause hospitalizations (H-M) [0.0008, 0.057] [0.0006, 0.021]

(0.0008, 0.088) (0.0006, 0.035)

(0.0008, 0.088) (0.0006, 0.035)
Cause hospitalizations (H-I) [0.0108, 0.057] [0.0064, 0.021]

(0.0058, 0.088) (0.0023, 0.035)

(-0.0407, 0.088) (-0.0117, 0.035)

Notes: The first two rows of the table report the estimated population prevalence and 95% confidence inter-
val from the Indiana COVID-19 Random Sample Study, conducted over the indicated dates, which assumes
random nonresponse (Menachemi et al., 2020; Richard M. Fairbanks School of Public Health, 2020). The
remaining rows report the (age-adjusted) bounds on prevalence, in brackets, with 95-percent confidence
intervals, in parentheses, from our different samples, under test monontonicity, as well as hospital mono-
tonicity (H-M) or hospital independnence (H-I) as indicated, for the week containing the random sample
study period.
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G.2 Comparison of prior testing and community testing

A standard way of measuring representativeness is to compare the distribution of

covariates in a study population to their distribution in the target population. In our

case, this approach is most convincing if we have well-measured covariates that proxy

for SARS-CoV-2 infection risk. Two candidate covariates are the community SARS-CoV-2

testing rate and the prior testing rate. The idea behind these proxies is that people who

come from areas with high test rates, or who have been tested in the past, may themselves

have a higher current likelihood of being infected with the virus.

To operationalize these measures, we define the community testing rate for person i as

the fraction of people in i’s county who have ever been tested, as of the end of our sample

period. We define the prior test rate of person i as of date t as the probability that i was

tested at least once during the week-long period [t− 15, t− 9]. We focus on this window

because it is the second week prior to our hospital testing window (which runs from

t − 2 to t + 4 for a patient admitted at t). We allow for a week of time to elapse between

the hospitalization and the “prior” testing because it is possible that some pre-hospital

testing would occur in the window [t − 8, t − 3]. When studying prior tests, we limit the

sample to each person’s first hospitalization after March 1, 2020, to avoid picking up the

higher testing that mechanically results from the fact that people hospitalized once are

more likely than the general population to have been previously hospitalized. As with

our bounds, we weight the data to match the population age distribution.

Table G.2 shows the community testing rate. The average county in Indiana has a

testing rate of 25%, with an interquartile range of 22% to 28%. The average person lives

30



Table G.2: Hospitalized patients are not drawn from counties with high test rates

County test rate

Average 0.252
25th percentile 0.219
75th percentile 0.280

Population
Average person .267

Hospitalizations
Non-ICLI .266

[20.8]
Clear cause .265

[16.9]
ICLI .267

[2.5]

Notes: The county test rate is the share of the county population tested at least once in our test data.
Table reports county-level statistics, as well as the average county test rates for the general population, the
non-ICLI hospitalizations, clear cause hospitalizations, and ICLI hospitalizations, as well as t-statistic (in
brackets) for the null hypothesis that the average person and the average hospitalization have the same
county test rate.

in a county with a test rate of 26.7%. The average non-ICLI hospitalized patient comes

from a county with a test rate of 26.6%, and the average clear-cause hospitalization pa-

tient comes from a county with a test rate of 26.5%. Among ICLI hospitalizations it is

26.7%. Our sample size is large enough that these differences are all statistically signifi-

cant. Practically, however, the differences are very small. Hospitalized patients appear to

come from counties that are roughly representative in terms of their testing rates. These

rates are all significantly different from the population average.

Figure G.1 shows the prior testing rate as a function of admission date for the non-ICLI

hospitalization sample, the clear-cause hospitalization sample, and the general popula-

tion (for which the prior test rate on day t is defined as the fraction tested between t− 15
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Figure G.1: Prior test rates, population and hospitalization samples
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Notes: The prior test rate is the fraction of the group at date t that was tested between t − 15 and t − 9.
Figure plots the average prior test rate for the population, for non-ICLI hospitalizations (in the left panel)
and for clear cause hospitalizations (right panel). The shaded area is the 95% confidence interval for each
week and hospitalization sample.

and t − 9). The rates in the hospitalization samples are initially close to the population

rate (when testing is low in general), but the lines diverge. By the last week of the sample,

the prior testing rate is 1-2 percentage points lower in the hospitalization samples, than in

the population. Although the differences in weekly testing rates are not statistically sig-

nificant, the lower prior testing rate in the hospital sample could indicate that the hospital

sample is negatively selected on SARS-CoV-2 infection risk.
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