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ABSTRACT

Difference-in-Difference (DID) estimators are a valuable method for identifying causal effects in 
the public health researcher’s toolkit. A growing methods literature points out potential problems 
with DID estimators when treatment is staggered in adoption and varies with time. Despite this, 
no practical guide exists for addressing these new critiques in public health research. We illustrate 
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periods) with more complex cases: additional treated groups, additional time periods of treatment, 
and with treatment effects possibly varying over time. We outline newly uncovered threats to 
causal interpretation of DID estimates and the solutions the literature has proposed, relying on a 
decomposition that shows how the more complex DID are an average of simpler 2X2 DID sub-
experiments.
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1 Introduction

Many studies in the social and health sciences rely on comparisons where treatment exposure

changes over time for some units. In the simplest case, the treatment effect is estimated via

Difference-in-Differences (DID), which compares two groups (treated and untreated) across

two time periods (pre-treatment and post-treatment). However, many applications involve

more complex settings with multiple groups and periods and staggered treatment adoption.

These designs are often analyzed using a two-way fixed effects (TWFE) regression that

includes group and time-period fixed effects.1 A recent methodological literature examines the

staggered adoption case in detail, highlighting previously unrecognized sources of confounding

and proposing new estimation strategies (5, 11, 16, 27).

In this review, we provide a guide to the key ideas and conclusions from this new literature

and describe novel threats to internal and external validity of the results. We focus on two

major themes. First, the combination of staggered adoption and time varying treatment

effects can introduce confounded comparisons into the TWFE regression estimator. Second,

researchers may find it helpful to conceive of a staggered adoption design as a collection of

simpler difference-in-difference comparisons and to take control over the sub-experiments

that contribute to their analysis. Understanding these two ideas can help researchers analyze

data from staggered adoption designs more effectively. To make the ideas concrete, we use

a running example of a health intervention to illustrate why previous methods are biased

and how this can be accounted for through careful research design.2 Our review focuses on

methods appropriate for binary treatments and that do not involve time-varying covariates,

which are widely applicable to health policy and public health research and are the most well

developed in the methodological literature.

2 A Stylized Example

To describe the challenges created by staggered treatment adoption DID designs and to

explain proposed solutions, we created a simulated example inspired by studies showing that

the introduction of sulfa drugs reduced mortality (20, 29). Sulfa drugs were introduced in all

1Modern applications in public health research and health services research are quite common. See for
example, Gupta et al. (18), Mullachery et al. (22), Yan et al. (34), and Kim et al. (21). More formally, we
obtained all articles published by the American Journal of Public Health (AJPH) between 2018-2022. Using
a natural language search of each article’s full text, we found AJPH published an average of ten articles per
year that used a DID.

2There are a number of existing excellent review articles of the modern econometric literature focusing on
DID, including: de Chaisemartin and D’Haultfoeuille (10), Roth et al. (26), and Baker et al. (2). Our goal is
to provide an accessible foundation to applied researchers, with examples and lessons relevant health and
social scientists.
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U.S. states in 1937. Our simulated example imagines that sulfa drugs were instead introduced

in states at different times. Figure 1 shows these simulated data: mortality rates for states

that “gained access” to sulfa in 1930, 1940, and 1945, along with a group of states that never

gained access during the hypothetical study time period.

In this example, the treatment effect varies over time in that treatment gradually reduces

mortality in subsequent years. In addition, the effect varies by the year in which treatment

was introduced (i.e., timing-group) in that treatment that began in earlier periods is more

effective than treatment that began in later periods.3 We also differ the base mortality rate

by timing-group, where the earlier timing groups have higher mortality rates, introducing a

source of geographic heterogeneity.4 We create the simulated data so that the introduction

of sulfa drugs gradually reduces mortality. For the 1930 group, mortality rates begin to fall

at a rate of 7.5 per year. Likewise, they fall by 5.0 and 2.5 in the 1940 and 1945 groups.

Because treatment changes the time trend of mortality, this is an example of a time varying

treatment effect, a common situation in many public health interventions. In general, there

can be many sources of treatment effect heterogeneity. The treatment effect could vary with

time since treatment, geography, calendar time of treatment, etc. This example is not meant

to explore all possible sources of heterogeneity. Code and data for the example are available

at https://github.com/hollina/arph-did-example.

3 Simple and Staggered DID

The staggered adoption design maps to real world settings where treatment “rolls out”

differently across across geographic areas, such as states or counties. Staggered adoption

obscures distinctions like treatment vs. control and pre vs. post. It helps to view the

staggered adoption design as a collection of simpler 2 × 2 DID designs, which we refer to

as “sub-experiments.” This perspective suggests researchers should develop principles for

actively deciding which 2× 2 DIDs will contribute to the analysis and be on guard against

DID comparisons that may be confounded.

In this section, we set out notation that clarifies the “ensemble of sub-experiments” view.5

We review core DID assumptions and show how they identify causal relationships in the 2× 2

setting. Then we show how these ideas generalize using the concept of a group× time average

3Time here refers to event-time (i.e., time since treatment). In some literatures, this variation in treatment
effect based on when treatment adoption occurred may be referred to as a “period-varying” treatment effect.

4This is consistent with evidence from Hollingsworth et al. (19) who show that areas with modern medical
facilities benefited from sulfa drugs more than areas without such facilities.

5Our notation is is similar to recent work by Goodman-Bacon (16) and Callaway and Sant’Anna (5), both
of which view timing group × time treatment effects as a key building block for understanding the staggered
adoption design.
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Figure 1: Stylized Example: Pneumonia/Influenza Mortality and Sulfa Drugs
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Influenza/pneumonia mortality death rate per 100,000

Notes: This plot presents a stylized example inspired by Jayachandran et al. (20). Each point is annual
death rate per 100,000 population from influenza and pneumonia for a given group. Data are constructed
so that there are four groups: the early treated group sees an annual decline beginning in 1930, the middle
treated group sees the decline beginning in 1940, the late treated group sees the decline in 1945, and the
never treated group has a constant death rate. There is also treatment effect heterogeneity. The annual
decline is largest for the early treated group (an additional 7.5 decline in the death rate in each year following
treatment) and smallest (additional decline of 2.5 per year) for the latest treated group. The middle treated
group sees a reduction of an additional 5 deaths per 100,000 in year each following treatment.
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treatment effect as an organizing concept.

3.1 Design and Assumptions

We use i = 1...N to index individual observations, s = 1...S to index the collection of groups,

and t = T1...TT to index calendar time periods. We focus on situations where treatment

exposures occur at the group× time level, and where treatments remain in place until the

end of the study period. Let As represent the calendar period when units in group s are

first exposed to treatment, and set As = ∞ for groups that never adopt treatment during

the study period. In our simulated Sulfa drugs data, As defines four groups that adopt in

1930, 1940, 1950, and ∞ (never exposed). Accordingly Dst = 1(t ≥ As) is a binary treatment

variable indicating whether treatment is active in group s in period t.

We represent causal relationships using potential outcomes. Yist(0) represents the outcome

person i from group s would experience in calendar period t under a hypothetical scenario

in which the person’s group is never exposed to treatment. Yist(a) represents the outcome

that the same person would experience at t if she were first exposed to treatment in calendar

period a. The causal effect of adopting treatment in period a compared to never adopting

treatment is βist(a) = Yist(a)− Yist(0). Notice the subscripts on βist(a), which emphasize that

the treatment effect can differ across units, groups, and time periods. Often researchers will

be interested in averages of this effect. In the DID setting, the likely average of interest is the

average treatment effect on the treated (ATT) evaluated at a particular calendar date. In

our notation, this is ATT (a, t) = E[βist(a)|As = a]. Finally, the realized outcome depends on

the adoption date so that Yist = Yist(0) +
∑TT

a=T1
βist(a)× 1(As = a). This is the untreated

outcome plus the treatment effect if the treatment is actually in place.

The DID design provides a way to recover causal relationships under two main assumptions:

the non-anticipation assumption, and the common trends assumption.

Assumption 1. No Anticipation: The average causal effect of adopting treatment
in period a is equal to zero for all calendar periods prior to period a. For periods
t < a

E [Yist(a)− Yist(0)|As = a] = 0

Assumption 2. Common Trends: In the absence of treatment exposure, the
average change across post-treatment time periods would be the same in the
treatment group (As = a ) and the comparison group (As > a). For periods t > a
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E [Yist(0)− Yist−1(0)|As = a] = E [Yist(0)− Yist−1(0)|As > a]

Assumption 1 is a version of the strict exogeneity assumption, familiar from panel data

models. In the DID literature, people sometimes invoke Assumption 1 by saying there are

no pre-trends. The assumption could fail – for example – if treatment exposure occurs in

response to volatility in the outcome variable, or if behavior changes due to expectations of

future treatment. In our simulated sulfa drugs example, the assumption holds by construction.

But in the real world, the no anticipation assumption would fail if states with unusually high

mortality in one year were more likely to gain access to sulfa drugs in subsequent years.

We state Assumption 2 (common trends) in terms of a comparison of a treatment group

made up of all units that adopt in period a, and a control group made up of all units

from groups that have not yet adopted treatment, including both never treated groups

and groups that adopt at a later time. In practice, researchers may choose to work with

a specialized common trends assumption that only relies on a never treated comparison

group. In Assumption 2, E [Yist(0)− Yist−1(0)|As = a] represents the time trend that the

treated group would have experienced in the absence of treatment exposure. This is a

counterfactual that we cannot observe directly. The common trend assumption implies that

the counterfactual trend is equal to the observed trend in the control group. The word “trend”

does not imply a linear trend over multiple periods: it is simply a change between two periods.

In the Sulfa drugs example, common trends implies that the the 1930 adoption group would

have continued on the same time trend as the never treated states if not for the new drugs.

Neither of these two assumptions is fully testable because both depend on counterfactual

quantities. However, good applied studies present ancillary analysis that partially test or

probe the credibility of these assumptions using event studies and related methods (Wing

et al. (31)).

3.2 2× 2 DID

The 2×2 DID design has two periods (t = [1, 2]) and two groups (s = [1, 2]). The first group is

never treated so A1 = ∞. The second group has A2 = 2, meaning it is first exposed in period 2.

Periods 1 and 2 are the “pre-” and “post-” periods, respectively. The “difference-in-differences”

estimator is the difference between the expected pre-post change in realized outcomes in the

treatment group and control group. Combining the estimator with Assumptions 1 and 2

gives:
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∆DID = E[Yi22 − Yi21|As = 2]− E[Yi12 − Yi11|As = ∞]

= E[Yi22(2)− Yi21(2)|As = 2]− E[Yi12(0)− Yi11(0)|As = ∞]

= E[Yi22(2)− Yi21(0)|As = 2]− E[Yi12(0)− Yi11(0)|As = ∞]

= E[βi22(2)|As = 2]− {E[Yi22(0)− Yi21(0)|As = 2]− E[Yi12(0)− Yi11(0)|As = ∞]}

= E[βi22(2)|As = 2]

= ATT (2, 2)

The second equality substitutes potential outcomes, and the third imposes the no-

anticipation assumption. In the fourth line we re-express Yi22(2) in terms of the untreated

outcome and treatment effect. The fifth line imposes common trends, and shows that the

DID estimator identifies the average treatment effect for the treated group in the post-period,

which is equivalent to ATT (2, 2) in the final line.

Adding structure makes the DID more intuitive. Write the untreated outcome as Yist(0) =

cs + bt + eist. Then the treated outcome is Yist(a) = Yist(0) + βist(a). Clearly, the time trend

is E[Yis2(0)− Yis1(0)] = b2 − b1 in both groups: that’s what common trend looks like in this

case. The group difference is E[Yi2t(0)− Yi1t(0)] = c2 − c1 in both periods, showing that the

DID assumptions do not require that the groups are “comparable”. What matters is that

disparities do not change over time.

The 2 × 2 DID can also be formed using regressions. Define Treats = 1(As = 2) and

Postt = 1(t = 2) and then estimate an OLS regression Yist = β0 + β1Treats + β2Postt +

β3(Treats × Postt) + eist. In the 2 × 2 case β3 = ∆DID. Alternatively, we could estimate

a linear TWFE regression model Yist = βFEDst + cs + bt + eist, where cs and bt represent

unobserved fixed effects and βFE = ∆DID.

3.3 Two Group Event Studies

Most empirical applications include data from more than just a single pre-and post time

period. A basic event study has two groups (s = [1, 2]) but multiple time periods t = T1...TT .

In our 2× 2 example, group 1 (never treated) has A1 = ∞. Group 2 is treated at A2 = a,

with a > T1. The pre-period runs from T1 to a− 1 and the post period runs from t = a to

TT . By adding periods to the 2× 2 design, the event study makes it possible to learn more

about time varying treatment effects, and also enables some partial tests of the core DID

assumptions.

We use ATT (a, t∗) = E[Yist∗(a)−Yist∗(0)|As = a] to represent the average effect of adopting
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in period a on outcomes experienced in calendar period t∗ among units in timing group

As = a. With this notation, ATT (a, a) represents the immediate effect, and ATT (a, a+ k)

represents the effect k periods after initial adoption.

Under Assumptions 1 (no anticipation) and 2 (common trends), ATT (a, a+k) is identified

for each k = 0...TT − a. The DID estimator of ATT (a, a+ k) is:

∆a+k
ES = E[Yi2,a+k − Yi2,a−1|As = a]− E[Yi1,a+k − Yi1,a−1|As = ∞]

= E[βi2,a+k(a)|As = 2]− {E[Yi2,a+k(0)− Yi2,a−1(0)|As = 2]

−E[Yi1,a+k(0)− Yi1,a−1(0)|As = ∞]}

= E[βi2,a+k(a)|As = a]

The logic is the same as the 2 × 2 case: realized outcomes are replaced with potential

outcomes, and the no anticipation and common trend assumption are imposed. By definition

E[βi2,a+k|As = a] = ATT (a, a+k), which is the average causal effect k periods after treatment

adoption. Applying the estimator repeatedly for different choices of k traces out the treatment

effect in event time. Interestingly, this sequence of DID estimators works by comparing a

focal post-period (a + k) with a fixed pre-period (a − 1), which is simply the last period

before the treated group adopts treatment.

In addition to tracing out time varying ATTs in the post-period, the event study also

provides a way to partially test the identifying assumptions. Specifically, if we slightly

strengthen the common trends assumption to hold for all periods rather than only the

post-treatment periods, then under the combination of no-anticipation and all period common

trends, we expect that ATT (a, a− h) = 0 for h = 1...T1 + a− 1. These pre-period ATTs

can be estimated using ∆a−h
ES = E[Yi2,a−h − Yi2,a−1|As = a] − E[Yi1,a−h − Yi1,a−1|As = ∞].

Rejecting the null that these pre-period DIDs are equal to zero implies that the common

trend + no anticipation assumptions is not met.

In practice, it is convenient to estimate these event study DIDs using a single linear

regression:

Yist =
a−2∑
h=1

αh1[As = a]× 1[t = h] +

TT∑
k=a

βk1[As = a]× 1[t = k] + cs + bt + eist

In this specification, each βk = ∆a+k
ES = ATT (a, a+k) and each αk = ∆a−h

ES = ATT (a, a−h).

The regression model estimates the full set of post-period and pre-period DIDs in one pass
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through the data, and provides a simple platform for estimating standard errors and performing

hypothesis tests. In applied work, graphs of the pre-period and post-period coefficients from

the event study regression are very common. Under the null hypothesis implied by the

identifying assumptions, the collection of pre-period coefficients – the αh – should be equal to

zero, and the post-period coefficients will trace out the pattern of time varying treatment

effects.

3.4 Staggered Adoption Designs

The staggered adoption design expands the event study to allow for multiple groups with

different treatment adoption dates. Often researchers are interested in the causal effects of

a state law that has been adopted in a set of states at different times. In our simulated

example, different states gain access to sulfa drugs in 1930, 1940, and 1945.

Compared to the simple 2× 2 and basic event study designs, staggered adoption muddies

the definition of treated and control groups and pre- and post- time periods. Until recently,

the typical approach was to combine the staggered adoption DID design with a statistical

model that allows for group and period fixed effects. The workhorse specification is the

two-way fixed effects model:

Yist = βFEDst + cs + bt + eist.

Our earlier review covers the TWFE model in detail (31), and an important advantage

of TWFE estimator is that it allows social and health science researchers to draw on their

existing and often extensive experience with panel data statistical models. However, it is

important to understand how to interpret the TWFE estimator in light of the emerging

literature on the staggered adoption design. A first point is that, in the 2× 2 DID setting,

βFE is identical to the ∆DID parameter. A second point is that when treatment effects are

constant, the TWFE estimator is consistent for the homogeneous constant effect parameter.

However, the constant treatment effect assumption is restrictive. It requires that the causal

effect of the treatment is does not differ across units, groups, and time periods. In that

constant effects scenarios, βist(a) = β. Thus, under the right conditions, the TWFE model

is a useful and convenient platform for analyzing data from a staggered adoption design.

In particular, if treatment effects are constant or at least not very heterogeneous, then the

TWFE model provides a convenient modeling framework.

In many cases, however, researchers using the TWFE model are not intentionally asserting

a constant treatment effects assumption implied by the model. Applied researchers often

explore treatment effect heterogeneity by augmenting the basic model to include interaction
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terms allowing treatment effects to vary across observed sub-populations, or to vary over time

using modified event study specifications. These techniques are often helpful, but we think in

practice most applied researchers seem to view the βFE coefficient not as an estimate of a true

constant treatment effect but as “some kind of average” of underlying heterogeneous effects.

Recent work by Goodman-Bacon (16) and de Chaisemartin and D’Haultfœuille (11) provides

a clearer account of how the βFE parameter represents a variance of treatment weighted

combination of underlying heterogeneous effects. However, these studies also highlight

conditions under which the summary measure may be confounded by the interaction of

treatment effect heterogeneity and staggered adoption.

At a broad level, the recent literature shifts the focus away from matters of statistical

modelling and towards the research design itself. The group× time treatment effect — the

ATT (a, t) — is a key building block for interpreting the staggered adoption design (6). The

group-time ATT has the same meaning in the staggered adoption case as it did in the 2× 2

and event study cases. The difference is that the staggered design distinguishes between

multiple ATT (a, t) parameters because there are more adoption groups and periods.

In principle, the staggered adoption design makes it possible to identify a collection of

different ATT (a, t) parameters using the same no anticipation and common trends assumptions

used in the simpler designs. The trick is to apply the standard DID estimator to the correct

combination of periods and groups. For a generic ATT (a, t) effect the DID comparison is:

∆a,a+k
SA = E[Yis,a+k − Yis,a−1|As = a]− E[Yis,a+k − Yis,a−1|As > a+ k]

= E[βis,a+k(a)|As = a]− {E[Yis,a+k(0)− Yis,a−1(0)|As = a]

−E[Yis,a+k(0)− Yis,a−1(0)|As > a+ k]}

= E[βis,a+k(a)|As = a]

= ATT (a, a+ k)

Once again the logic of the derivation parallels the 2× 2 and basic event study case. The

only difference is that the treatment group is defined by conditioning on the value of the

adoption date, and the control group is defined as all groups that adopt after focal post-period

(a+ k). This definition uses all feasible control observations. In practice, researchers may

choose to work with a more specialized subsets of the feasible set of controls, such as the set

of never treated controls or perhaps a set of controls that do not adopt until some specified

period in event or calendar time. Constraints like this might be desirable in applications

where researchers wish to estimate a sequence of post adoption ATTs for each timing group

and want to ensure that variation in treatment effects from one period to the next do not
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arise because of changes in the composition of the control group.

In addition to estimating a sequence of time varying treatment effects for each adoption

group, the staggered adoption design also allows researchers to construct partial tests of the

common trend and no-anticipation assumption using the same approach described for event

study designs. Specifically, DID comparisons can be formed to estimate the pre-adoption

effects — ATT (a, a− h) — which should each be equal to zero under the null hypothesis that

the strong common trend and no-anticipation assumptions are valid.

With a balanced control group, the sequence of pre- and post-treatment ATT (a, t) parame-

ters can be estimated using an event study regression with the sample limited to observations

from the specified adoption group, the balanced (clean) control group, and the relevant

calendar time periods. The specification is identical to the basic event study specification.

An immediate question is what to do with all of these causal effect estimates? In a small

staggered adoption design, where there are not many timing groups, it may be sensible to

simply examine each of the effects in isolation. This provides insight into the degree of

treatment effect heterogeneity, and the pre-treatment ATTs may help researchers gauge

the credibility of each sub-experiment. However, this approach can be unwieldy in larger

staggered adoption designs. Estimating multiple sub-group effects may also be statistically

inefficient. For both reasons, it will often make sense to aggregate or average the group× time

estimates into a single summary average causal effect parameter. Following Callaway and

Sant’Anna (5), we can think of an abstract representation of a summary parameter as:

δw =
∑
a

∑
t

w(a, t)ATT (a, t)

In this expression, w(a, t) is a weight that is attached to a particular group× time cell,

and δw is the summary parameter based on that weighting scheme w(). In some instances,

researchers may want to estimate a collection of summary effects that characterize averages

of the group× time ATTs by event time (i.e., years relative to the date of adoption). For

example, Wing et al. (30) propose a trimmed aggregate ATT weighting scheme that enforces

compositional balance across event times and show how to estimate this parameter directly

using a stacked DID estimator. In other cases, weights might be chosen to build a summary

measure of average causal effects across all units up to a specific point in calendar time. The

details of how best to construct interesting weighted summaries depends on the research

question. Callaway and Sant’Anna (5) provide a detailed discussion of several options that

will often be useful in applied work.

Many estimators used in applied work – including the TWFE estimator – provide a kind

of automated aggregation. These regression based aggregations usually do not correspond to
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any of the weighted summary concepts developed in Callaway and Sant’Anna (5), although

the stacked DID estimator in Wing et al. (30) is one exception. Instead, standard regression

based aggregations produce summaries of underlying heterogeneity that are a byproduct of the

optimization problem underlying the regression. Goodman-Bacon (16) shows – for example –

that the TWFE estimator applied to the staggered adoption design can be interpreted as a

“variance of treatment” weighted average of underlying group× time average effects. These

byproduct averages do not have much appeal as conceptual objects of interest, although in

many situations they may not be very different from more theoretically coherent approaches,

and they may also have advantages in the form of simplicity and also statistical precision.

3.5 New Understandings of Threats to Validity

The TWFE estimator is a widely used way to analyze data from a staggered adoption DID.

Viewed through the lens of panel data econometric models, the TWFE estimator forms an

estimate using all available “within-group”variation in the treatment variable. Purely between

group and time series variation in the treatment variable is discarded in order to eliminate

possible confounding from group and time unobserved effects. As we explained earlier, the

TWFE estimator is equivalent to the DID estimator in the 2× 2 setting and in the staggered

adoption setting under a constant treatment effects assumption. The connection to the DID

research design is murkier in staggered adoption designs with treatment effect heterogeneity.

In an influential paper Goodman-Bacon (16) showed that the within variation in treatment

can be expressed as a collection of 2 × 2 DIDs. In that sense, the TWFE estimator is a

weighted average of these underlying DIDs. Goodman-Bacon (16) works out the weights

assigned to each underlying DID comparison, which is helpful in understanding which policy

changes “drive” the overall estimate.

However, the most important contribution of the Goodman-Bacon (16) paper is the

discovery that some of the 2× 2 DID comparisons that contribute to the TWFE parameter

are actually confounded even when the common trend and no-anticipation assumptions are

valid as stated. Goodman-Bacon (16) categorizes the 2× 2 DID comparisons that contribute

to the TWFE estimator into three types:1) Treated vs Never Treated DIDs (As = a vs

As = ∞), 2) Early vs Late DIDs (As = a vs As = c > a), and 3) Late vs Early DIDs

(As = a vs As = b < a). In each case, the actual variation comes from specific calendar time

periods during which one group changes status and the other does not. These three types of

comparisons are weighted together to form a single summary coefficient, βFE.

The problematic DIDs involve comparisons in which a treatment group that changes

treatment status between periods is compared with an “already treated” comparison group.
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This type of late adopter vs. earlier adopter DID is based on within-group variation in the

TWFE sense. But it can create problems if treatment effects vary with time since event. For

example, consider a DID in which timing group As = a is compared with an already treated

control group with As = b < a:

∆a,a+k
Bad = E[Yis,a+k − Yis,a−1|As = a]− E[Yis,a+kYis,a−1|As = b]

= E[βis,a=k(a) + Yis,a+k(a)(0)− Yis,a−1(0)|As = a]

− E[(Yis,a+k(0) + βis,a+k(b))− (Yis,a−1(0)) + βis,a−1(b))|As = b]

= E[βis,a=k(a)|As = a] + E[βis,a+k(b)− βis,a−1(b)|As = b]

{E[Yis,a+k(0)− Yis,a−1(0)|As = a]− E[Yis,a+k(0)− Yis,a−1(0)|As = b]}

= ATT (a, a+ k) + E[βis,a+k(b)− βis,a−1(b)|As = b]

The first line shows the DID comparing the later adopting group with As = a to the early

adopting group with As = b < a before and after the later adopting group is treated. The

second line substitutes the potential outcomes and imposes the no-anticipation assumption.

Importantly, the realized outcomes in the early adopting control group are not “untreated

outcomes” in this comparison. Since the As = b group has already been exposed to treatment,

its realized outcomes include the causal effects βist(b). The third line re-arranges. The term

in braces is the difference in the time trend in untreated outcomes in each group, which

equals zero under the common trends assumption. The final line shows that ∆a,a+k
Bad is equal

to ATT (a, a + k) plus a bias term that is driven by time varying treatment effects in the

early treatment comparison group. Depending on the sign and magnitude of the bias term,

∆a,a+k
Bad can be biased up or down compared with ATT (a, a+ k). Sign flips are possible, for

example. The bias occurs despite the fact that both the common trend assumption and the no

anticipation assumption are valid. A key point here is that in the staggered adoption design

some of “within variation” does not identify a causal effect. In particular, within variation

based on the comparison of later and earlier adoption groups is confounded by time varying

treatment effects. In situations where treatment effects do not vary much over time, the bias

term would disappear and these comparisons would identify the relevant ATT. Because the

bad Late vs Early comparisons are included in the overall weighted average, it is possible

that βFE is not simply a weighted average of underlying group× time ATTs.

The implicit weights correspond to factors that influence the amount of variance con-

tributed by each underlying 2× 2 DID. As a result, these weights are a function of the size of

the timing group and how close to the middle of the overall study window the timing group is
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treated. Groups treated towards the middle of the study window experience more variation

in their treatment variable and get more weight. These weights determine how important the

bad Late vs Early comparisons are in the overall analysis. If the bad comparisons receive

negligible weight, then this strange new source of bias may not be practically important, for

example.

Figure 2a illustrates the weights associated with each type of DID comparison in our

simulated sulfa drugs example. Start with the As = 1940 adoption group, which adopts near

the middle of the study window. It is possible to construct three separate 2×2 DIDs in which

the 1940 adoption group serves as the treated group.6 The first and most straightforward

estimator is to compare the 1940 group to the group of states that never obtained sulfa drugs

before and after 1940 (As = ∞). The comparison is represented by the blue square with

the label “1940 vs. never”. This is a clean comparison that will not suffer from bias if the

standard DID assumptions hold. Indeed, the DID in the graph nearly perfectly recovers the

true average treatment effect for the 1940 treated group of -25.

A second 2× 2 DID compares the 1940 treatment group to the set of states that obtained

sulfa drugs in 1945. This “Early vs Late” comparison is represented by a red circle with the

label “1940 vs. 1945.” Since the true treatment effect gets larger over time in this example,

the 1940 vs 1945 DID represents an average effect from earlier in event time than the 1940 vs

Never comparison. The third 2 × 2 DID is a bad (Late vs Early) DID that compares the

1940 group to 1930 group. The estimate is shown by the green triangle with the label “1940

vs. 1930.” The Late vs Early comparison is an example of a problematic DID comparison

because the control group is already treated. And indeed the bad comparison yields a positive

(i.e. wrong signed) treatment effect estimate of 54, implying that introducing sulfa drugs

increased mortality.

The bias occurs because the difference between the 1940 treated group and the 1930

treated group is smaller before 1940 than it is after 1940. The reason for this can be seen by

examining Figure 1, focusing on the 1940 sulfa introduction group (circles) and the group

treated ten years earlier in 1930 (triangles). Prior to 1930, both groups, the triangles and

squares, share a common trend. The 1930 group then gets treated and experiences a treatment

effect that grows over time. In the time after it is treated it acts as a comparison group

for the middle treated 1940 group. However, these two groups are no longer on common

trends, since the treatment itself has changed the trend for the 1930 treated group. During

the pre-period of this 2× 2 DID, which runs between 1930 and 1939, the triangles experience

a flat trend, while the squares are following a steep downward trend driven by the treatment

6We make the graph using the bacondecomp package in R. See our online supplement at, https://github.
com/hollina/arph-did-example.
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itself in the earlier treated group.

Unfortunately for the two-way fixed effects DID estimate, this biased estimate receives

a non-negligible weight (18%) when forming the combined treatment effect estimate. This

bias can be seen in any of the three potential Late vs Early comparisons in our example.

Because of these biased comparisons, the two-way effects estimate is quite biased relative

to the average real treatment effect. This is well evidenced in Figure 2b, where the TWFE

estimate is above zero at a positive 5.1 (p-value of .03), while other estimates of the “real”

average treatment effect are well below zero, and which we discuss in more detail below.

One key insight of Goodman-Bacon (16) is that we can avoid this bias by simply removing

these potentially biased comparisons from our estimation strategy. This insight underlies one

of the key design principles that have emerged from the new DID literature: the importance

of using so-called “clean controls”. The idea is that – in a staggered adoption setting – causal

inferences should be based on DIDs that compare treated timing groups to never treated

comparison units, to future treated comparison units, or both. Causal inference should not

be built on comparisons between treated timing groups and previously treated comparison

units. In the sulfa drugs example, we would exclude the comparison of the 1940 group as the

treated group to the earlier exposed 1930 group. Likewise, we would exclude the comparisons

based on the 1945 group as treated to the earlier exposed 1930 or 1940 group.

4 Estimation Strategies and Techniques

Studies based on staggered adoption DID designs are increasingly expected – by reviewers and

editors at many journals – to address the concerns raised by the staggered adoption design. In

this section, we describe two specific methods: (i) stacked difference-in-difference introduced

in Cengiz et al. (7) and Deshpande and Li (13), and (ii) the explicit group-time approach

developed by Callaway and Sant’Anna (6). Our discussion of the stacked DID emphasizes

clean controls and balanced sample composition, and it aggregates results “automatically”, see

Wing et al. (30) for further analysis of the stacked DID estimation strategies. The Callaway

and Sant’Anna (6) estimator hews closely to the group× time perspective presented in this

paper but it provides explicit options for aggregating effects in flexible ways. After discussing

these two methods in some detail, we provide a broad overview of several other leading

approaches.
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Figure 2: Staggered designs and average treatment effects

(a) Goodman-Bacon (16) decomposition of two-way fixed effects DiD
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4.1 Stacked Estimation and Clean Controls

In the stacked DID framework, each policy adoption is viewed as a separate sub-experiment,

and each sub-experiment is designed to be free from confounded DID comparisons. We

describe the inclusion criteria, data structure, and estimation strategies used in the stacked

DID approach.

4.1.1 Inclusion Criteria and Sub-Experiments

In a basic event study, there are two groups and possibly multiple periods pre and post. In

the staggered adoption setting, the maximum length of time before treatment adoption is

As − T1 and the maximum length of time after treatment adoption is TT − As. Thus, the

length of the feasible pre and post periods varies across adoption groups.

To implement a stacked analysis, we impose a fixed event time window that will be used

across all sub-experiments. Let κa be the length of the pre-treatment period and κb to be the

length of the post-treatment period. The κ parameters are a design choice with practical

implications. A shorter event time window may allow more policy events to be studied. A

longer window allows treatment effects that vary with time since treatment to be studied,

perhaps for a smaller subset of adoption events. Let ΩA = {As|T1 + κa ≤ As ≤ T − κb}
represent the set of policy changes that are feasible to study given a choice of κa and κb. Use

d ∈ ΩA to index the admissible sub-experiments.

We build a separate data set for each sub-experiment d ∈ ΩA. The observations included

in a given sub-experiment are determined by three inclusion criteria:

IC 1. Homogeneous Treatment Timing: Treatment adoption dates are homogeneous and

non-staggered.

IC 2. Clean Controls: The control group consists of units that are not exposed to treatment

during the event study period running from d− κa to d+ κb.

IC 3. Admissible Calendar Periods: All observations on treated and control units come from

calendar time periods that fall inside the event window so that d− κa ≤ t ≤ d+ κb.

Under the homogeneous treatment timing condition, let Tsd = 1(As = d) indicate that an

observation from group s is a member of the treatment group in sub-experiment d. Under

the clean controls condition, define Csd = 1(As > d+ κb) to indicate group s is a valid clean

control for sub-experiment d. Finally, under the Admissible Calendar Periods condition, let

Mtd = 1(d− κa ≤ t ≤ d+ κb) indicates that calendar period t falls inside the event window

for sub-experiment d. Putting the three rules together implies that Iistd = Mtd(Tsd + Csd) is
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a binary inclusion variable indicating whether observation i from group s in calendar period t

belongs in sub-experiment d.

Applying the inclusion rule to the raw data repeatedly for each sub-experiment yields

a collection of sub-experimental data sets, each centered around a specific policy change

and including data only on clean controls and treated units for the appropriate calendar

time periods. The sub-experimental data sets are then vertically concatenated into a single

“stacked”analytic dataset. Note that some units will appear as control observations in multiple

sub-experimental data sets.

4.1.2 Stacked Estimation

To estimate an event study regression based on this stacked data, we use Yised to represent

the observed outcome for unit i from state s in event time period e = t− d in sub-experiment

d. Then the following regression model is fit to the stacked data:

Yised =
∑

h=−κpre...κpost

h̸=−1

[
βstacked
e (Dsd × 1[e = h])

]
+ asd + bde + ϵised (1)

In this regression asd and bed are a set of group × sub − experiment fixed effects and

event− time× sub− experiment fixed effects. This method uses what looks like a typical

TWFE regression estimate, but because of the structure of the data, it only incorporates

clean controls. One way to think about this regression is as a way of estimating all of the

ATT (a, t) parameters and then immediately aggregating them into a single set of event time

parameters, βstacked
e . Versions of the fixed effects specification given above has been used

in applied work by Cengiz et al. (7) and Deshpande and Li (13), although their stacking

procedure is not fully balanced as we propose here. Although free of confounding from late

vs early adoption comparisons, the aggregation produced by these models are still based

on implicit variance of treatment weights, which may not be intuitive or appealing way to

summarize the underlying group-time ATTs. Wing et al. (30) show how to construct sample

weights that ensure that the stacked event study specification corresponds to a coherent

aggregate ATT parameter. In the examples Wing et al consider in their paper, the correctly

weighted estimator often produces estimates that are very close to the estimates from the

fixed effect specification given above.

Figure 2b shows the stacked DID estimator for our sulfa drugs example. Relative to the

TWFE DID estimate, we see the expected negative effect. In addition, the estimate is almost

identical to one conception of the “real” effect. This comes from taking the weights and
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estimates from only those 2x2 DID estimates in Figure 2a that come from clean estimates and

do not suffer from confounding, with weights re-normalized to sum to 1. This is in essence

what the stacked DID estimator is accomplishing, and because both methods are based on

OLS regressions, they are both variance weighted.

4.2 Callaway and Sant’Anna and Aggregation

Callaway and Sant’Anna (5) develop an approach that is explicitly organized around the

group× time ATT parameter, and the notation we use in this paper draws on their approach.

The Callaway and Sant’Anna (5) paper makes two larger contributions beyond the basic

framework. First, they develop strategies for incorporating time invariant baseline covariates

into the analysis of a staggered adoption DID design using inverse propensity score weights,

and or regression adjustment methods. Second, they discuss strategies for aggregating

group× time ATT parameters.

Although there are many ways that ATT (a, t) parameters could be aggregated, we think

that applied researchers will often be interested in examining dynamic treatment effects using

what Callaway and Sant’Anna (5) call a “balanced event study” aggregation. Using κa and

κb to represent an event study window of interest, the balanced event study aggregate ATT

at a specific event time q periods away from treatment adoption is:

δκa,κb
q =

∑
a

1[T1 + κa ≤ a ≤ TT − κb]× ATT (a, a+ q)× Pr(As = a|T1 + κa ≤ a ≤ TT − κb)

δκa,κb
q is an average of ATT (a, a + q) parameters across groups with different values of

a ∈ As. In practice, the idea is to estimate a family of δκa,κb
q parameters for values of

q = −κa...0...κb and then plot these parameters in an event study graph. The summation

cycles over each of the treatment adoption dates, a ∈ ΩA. The first term trims out any

adoption dates a that occurs outside the κ − window, ensuring an common composition

across event times. The third term is the weight assigned to the surviving ATT (a, a+ q)and

the weight is the sample size of the adoption group relative to the total sample size of all

admissible adoption groups.

In Figure 2b we show the dynamic aggregate estimate from Callaway and Sant’Anna (6)

that averages the average treatment effects across all timing groups that have different lengths

of exposure. This estimator is almost identical to the second “real” treatment effect, which

constructs the timing group specific treatment effect by subtracting the imposed treatment

effect for each group in event-time and then takes the simple average across timing-groups
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for the entire post-treatment period.

4.3 Comparison of estimation techniques

Table 1 provides a side-by-side summary of six of the leading estimation techniques, high-

lighting attributes that are relevant for applied researchers when selecting a method.7 Below,

we give a short explanation of key characteristics and practical implications of each method.

4.3.1 Overview of Estimators

At a basic level, each estimator provides a different way to ensure that later treated groups

are not being compared to earlier treated groups. Like Callaway and Sant’Anna (6), many

of them explicitly estimate dynamic treatment effects akin to event studies, for each timing

group, and then provide ways to aggregate these group-time estimates into a summary

estimate more comparable to a simple DID coefficient.

Sun and Abraham (27) and Wooldridge (33) use ordinary least squares regressions, but

include a large set of interaction terms to carefully ensure that treated units are only being

compared to clean controls. Gardner (15) takes a different approach by setting up a two

step regression-based method that first estimates the group- and time-fixed effects using only

untreated observations before estimating treatment effects. Finally, de Chaisemartin and

D’Haultfœuille (11) build an estimator focused on comparing changes in treated units just

before and after treatment, to units who do not experience a change at that time.

4.3.2 Do you need a specific software package to implement?

As a practical matter, regression based estimators, such as those proposed in Gardner (15),

Wooldridge (33), Sun and Abraham (28), and stacked DID, are fairly straightforward to

implement using standard commands in statistical software such as R or Stata, though

specialized software packages are available in most cases. On the other hand, the methods

proposed by Callaway and Sant’Anna (6) and de Chaisemartin and D’Haultfœuille (11) may

be better suited towards utilizing a package. While these techniques are based on simple

comparisons for each timing group, they involve multiple steps and may be less intuitive to

code since they do not use regressions.

7For additional new estimators, see the complementary reviews in Roth et al. (26) and de Chaisemartin
and D’Haultfoeuille (10). Notable methods we do not cover include estimators from Dube et al. (14), Borusyak
et al. (3), and de Chaisemartin and D’Haultfoeuille (9).
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4.3.3 What are the primary outputs? How do they relate to a well-known estimand?

Researchers familiar with the canonical 2× 2 DID design or two-way fixed effects regression

will be used to estimating a single parameter that summarizes the treatment effect, or a set of

event study coefficients. Three of the new estimators are similar in this regard, by outputting

a single, (weighted) average effect: stacked DID, Gardner (15), and de Chaisemartin and

D’Haultfœuille (11). However, a potential disadvantage of these approaches is that the

single effect may not directly correspond to an easily-interpretable parameter, such as the

average treatment effect on the treated (ATT). For example, stacked DID results in a variance

weighted estimate, since it is using OLS methods. Gardner (15) provides multiple options for

weighting estimates that correspond to different weighted averages of ATTs. de Chaisemartin

and D’Haultfœuille (11) estimate a single ATT, interpreted as an average treatment effect in

the first period in which a group changes treatment status.

Alternatively, another class of methods explicitly estimate all group-time ATTs, giving

the researcher flexibility to aggregate if desired (6, 28, 33). As mentioned in Section 4.2,

this approach adds a degree of complexity but gives the researcher explicit control over the

averaging process. For example, Callaway and Sant’Anna (6) provide a method to aggregate

group-time ATTs into a single average that is comparable to the ATT estimated in a 2× 2

DID.

4.3.4 What observations are included in the control group?

All methods ensure that only clean observations that have not been treated in earlier periods

are included in the control group. Most methods provide flexibility to include either never

treated units, not yet treated units or both in the control group. Gardner (15) and Wooldridge

(33) are the exceptions in that they must use both.8

Why might one control group be preferred over another? Choosing to only use never-

treated observations as the control group may be more robust to violations of the no

anticipation assumption, since anticipation effects could impact the trend in soon to be

treated observations. However, as Wooldridge (33) notes, estimators that use all untreated

observations as controls may have a slight advantage in precision because more of the data is

being used.

8In the case when all units are eventually treated, note that Wooldridge (33) provides guidance on how to
use the not-yet treated and last-to-be treated as the control group.
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4.3.5 What guidance exists to calculate standard errors?

The estimators in Gardner (15) and Wooldridge (33) are based on well-worn statistical

methods, which include formulas for the asymptotic variance-covariance matrices. For applied

work, this means any regression software can correctly calculate standard errors off-the-shelf,

without corrections or additional packages.

In contrast, a straightforward reason to prefer a method’s package is to correctly calculate

standard errors. For example, de Chaisemartin and D’Haultfœuille (11) derive a novel

asymptotic distribution for the variance-covariance matrix of their estimator, which can be

implemented using their Stata package. Similarly, standard errors in both Callaway and

Sant’Anna (6) and Sun and Abraham (28) are calculated via bootstrapping.

Among the techniques highlighted here, the least formal econometric theory exists on how

to properly calculate standard errors within the stacked DID. Because the estimation relies

on a single regression command, after the data has been reshaped, a standard approach is to

simply cluster errors at the group-level, as would be common in a standard two-way fixed

effects regression.

It is worth noting that the expected efficiency (statistical precision) of the new estimators

remains a somewhat open question. There may also be an overall bias-efficiency trade-off

between new estimators and the two-way fixed effects estimator.9 Intuitively, ensuring clean

controls often comes at a cost of excluding some of the data, and this insight guides some of

practical advice in Section 5.10

4.3.6 What is the role, if any, for covariates?

While we have focused here on new sources of confounding due to time varying treatment

effects and staggered adoption, the standard common trends assumption is still crucial to any

DID design. Acknowledging this, most of the new estimators allow for a weaker identifying

assumption that states trends are parallel, conditional on a set of time-invariant, observed

covariates (6, 9, 15, 33).

What about time-varying covariates? To include time varying covariates in a DID design,

researchers must assume that the covariates are not affected by the treatment and that the

covariates do not impact the effect of the treatment. These are strong assumptions that may

not hold in many settings.11 Readers are referred to Gardner (15), Caetano et al. (4) and

9See de Chaisemartin and D’Haultfœuille (11) for an excellent discussion.
10We also note a separate estimator by Athey and Imbens (1) that views uncertainty as design-based,

rather than sampling based, that may be appropriate in settings when the timing of treatment across groups
is plausibly random.

11Deeper discussion of this point is available in Wooldridge (32), Pei et al. (23), and, Caetano et al. (4).
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de Chaisemartin and D’Haultfoeuille (9) for early work in this space.

4.4 Other considerations

Most of the new estimators are designed for binary absorbing treatments, meaning that

treatment takes on the same value for all treated groups and once a group is treated, it remains

treated for the duration of the data. However, there are exceptions. A key contribution of the

body of work by De Chaisemartin and D’Haultfoeuille is an explicit consideration of a broader

class of treatment variables (9, 11, 12). For example, the authors have developed methods that

are robust when treatments turn on and off (non-absorbing); when treatment compliance or

receipt varies within groups (‘fuzzy’); and when the treatment variable represents a different

levels of exposure.

5 Practical Advice

In this section, we provide a check-list of suggested best practices for applied researchers

confronted with a staggered adoption study design.

5.1 Explore the raw data

In some ways the new literature provides more structure to carrying out the same types

of data exploration that researchers have typically performed in DID projects. One of the

ways that most researchers figrst begin to probe the key assumptions of no anticipation and

common trends has been to plot the raw data over calendar time among treatment and

control units. Under new understandings of DID, this should still be the first step, but with

the added advice to separate the data into timing groups to make a figure akin to Figure 1.

5.2 Assess if and describe why bias is likely to be an issue in your setting

With this figure in hand, researchers can begin to assess the scope for potential bias in their

DID design. First, researchers can visually compare trends between timing groups (and an

untreated group if applicable) in pre-treatment years to assess no-anticipation and common

trends. Researchers also get a sense of whether or not any potential treatment effects change

over time by visualizing whether treated groups experience a different trend after treatment.12

12Note that we recommend plotting the raw data in calendar time, not an event study. Coefficients in an
event study can be affected by the same bias due to heterogeneous effects as the two-way fixed effects model
(Sun and Abraham (28)).
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It is also worth noting that even if adoption is staggered and treatment effects are time

varying, the severity of confounding also depends on how much the adoptions spread over

time. If adoption is staggered only over few and short periods, the problems pointed out here

would be smaller than if adoption is spread out over many years. An emerging best practice

is to also plot the adoption timeline or to include a table with adopting groups and period of

adoption (as in Table 1 of Cook et al. (8)). This allows readers to see how the pattern of

adoption may affect the simple two-way fixed effects estimates.

5.3 Use an empirical diagnostic method to explore the possible bias

In addition to visualizing the raw data and describing the extent of staggering, more formal

diagnostics can help understand the potential extent of confounding in a TWFE regression

analysis. For example, researchers can use the method in Goodman-Bacon (17), Figure 2a,

to decompose all embedded two-by-two DID comparisons, their treatment effect estimates,

and their contribution (weight) to the overall two-way fixed effect coefficient. This allows

the author to identify how much weight “bad” controls contribute to the overall estimate,

the overall magnitude of the biased comparisons relative to the aggregated two-way fixed

effects estimate, and the specific comparisons that may be problematic. Similarly, Sun and

Abraham (28) show how event study coefficients can be similarly “decomposed” into their

underlying group-time ATTs and associated weights, and de Chaisemartin and D’Haultfœuille

(11) propose a ratio statistic that assesses how robust the two-way fixed effects estimate is to

treatment effect heterogeneity.

5.4 Plan to estimate your treatment effect with at least two techniques

One approach researchers can take is to consider estimating the treatment effect using at least

two specifications: the simple two-way fixed effects regression, and one of the new estimators,

such as those summarized in Table 1. While these new estimators are robust to heterogeneous

effects and staggered adoption, there may be tradeoffs in some contexts. For one, there may

be a bias-efficiency trade-off, as discussed in Section 4. In addition, readers may prefer to at

least see the specification they are more accustomed to in order to help contextualize the

results from new estimators.

Applied researchers are likely familiar with estimating regressions using alternate spec-

ifications as a robustness check. Our advice on how to place multiple estimators within a

paper depends on the results of diagnostics. If visualizing the raw data and other diagnostics

suggest that confounding due to time varying treatment effects is likely to be large, we

recommend that an estimator robust to this confounding be considered the “main” estimate
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and TWFE estimates potentially be included with explicit acknowledgment that they are

likely confounded. On the other hand, if potential confounding seems likely to be small

and authors feel the TWFE specification will be more intuitive to readers, then it could be

included as the main estimate with at least one alternative specification from the more robust

methods.

Because the robust methods are new within the econometric literature, their behavior and

relative performance is still being established. Without a clear “best” robust estimator, at

this point in time, researchers can use the characteristics of their study’s setting, the desired

parameters they wish to estimate, and their discretion to select the specific robust estimators

to use. (See Section 4 for a detailed comparison).

5.5 Consider new robustness checks to test for pre-trends

Empirical researchers often include an event study as partial evidence of whether the “No

Anticipation” and “Common Trends” assumptions from Section 3 hold (31). However, recent

work has noted that many event studies are under-powered in practice and unlikely to detect

meaningful violations (24, 25). Two alternative approaches have been proposed. First,

researchers can use the methods in Roth (25) to determine the smallest trend that can be

detected in the pre-period, with a given power, for their sample. Second, scholars can estimate

bounds on their treatment effect in the post-period, given a range of possible trends in the

pre-period (24).

6 Conclusion

In recent years, a rapidly developing methods literature has identified and provided solutions

to overlooked problems that occur when using standard two-way fixed effects models to

estimate a DID study design. In this review, we have outlined two key takeaways from

this literature for public health researchers. First, when treated groups adopt treatment

at different times (staggered adoption) and when the effect of treatments change over time

(time-varying treatment effects), the standard regression approach with group and time fixed

effects can be biased. This bias occurs because part of the estimate is based on comparing

treated units to previously treated units, whose time trend itself has been impacted by their

earlier treatment. Second, when adoption is staggered, the researcher really has multiple sub-

experiments. Therefore, researchers must choose what weights to apply to each sub-experiment

to aggregate them into a single summary estimate.

With these two points in mind, we describe some of the various estimators that are robust
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to the bias introduced by treatment effect heterogeneity. We also provide some guidance on

best practices for diagnosing potential bias, choosing an appropriate estimator, and robustness

checks. Finally, we illustrate these problems and solutions with an example public health

intervention. With these fundamental points and our check-list in mind, public health DID

research can be strengthened by implementing new methods when studying interventions

that occur at different times for different groups.
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