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ABSTRACT

Glucagon-like peptide-1 receptor agonists (GLP-1s) represent a major improvement in treatment of 
diabetes, obesity, and cardiovascular risk reduction, but they are also among the most expensive 
drugs in widespread use and the subject of significant policy debate. The high price of these drugs 
may overstate their net cost if the health improvements they produce lead to reduced downstream 
health care use and medical spending, that is, cost offsets. We estimate such offsets using insurance 
claims data, examining the effects of GLP-1 initiation on subsequent GLP-1 use and spending, and 
on other non-GLP-1 spending. We use a stacked difference-in-differences design, comparing 
patients initiating GLP-1 medication to not-yet-treated controls who initiate GLP-1s several 
months or years later, allowing us to control for underlying time trends and baseline characteristics. 
Overall, we do not find a reduction in downstream medical spending. Although GLP-1 initiation 
reduces spending on other diabetes medications, total non-GLP-1 spending increases, driven by 
higher outpatient health care use; GLP- 1 drug spending rises mechanically. For health care payers, 
the relevant cost of GLP-1 initiation therefore extends beyond the sticker price of the drug. We find 
similar results across subgroups of GLP1 initiators including those with prior cardiovascular 
disease and those without diabetes (consistent with obesity indication). Our main results examine 
spending responses over the first year after initiation. However, we also estimate longer run 
effects in a smaller sample and find no cost offsets even five years after GLP-1 initiation. Taken 
together, these results suggest that payers facing the costs of GLP-1 coverage are unlikely to see 
large savings from reduced spending on other care. If GLP-1 therapies ultimately yield cost 
savings, they are likely to occur only over longer horizons or through non-medical channels.
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1— Introduction
Obesity and diabetes are major drivers of poor health in the United States and around
the world (Mokdad et al. 2018; Hay et al. 2025). The prevalence of both conditions has
continued to rise in recent years (Centers for Disease Control and Prevention 2024; Fryar,
Carroll, and Afful 2020). However, a new class of drugs has recently proven highly effective
for weight loss and diabetes management: glucagon-like peptide-1 receptor agonists (GLP-
1s).1 But these drugs are associated with very high prices.

The high price of GLP-1s, combined with the high prevalence of obesity, has made in-
surance coverage an important fiscal challenge for insurers and policy makers. In an op-ed,
Deese, Gruber, and Cummings (2024) argued that making GLP-1s available to all Americans
with obesity could cost the government over a trillion dollars per year, an amount approach-
ing total annual Medicare spending. However, the procurement costs of these drugs may
overstate their true cost to insurers because their effectiveness in treating obesity and di-
abetes may reduce downstream spending on related health conditions. Clinical trials show
that GLP-1s improve glycemic control in type 2 diabetes (Yao et al. 2024), produce sub-
stantial and sustained weight loss (Wilding et al. 2021; Jastreboff et al. 2022), and reduce
heart attacks and strokes (Steven P. Marso, Gary H. Daniels, et al. 2016; Steven P. Marso,
Stephen C. Bain, et al. 2016b; Lincoff et al. 2023). Whether these health improvements
translate into meaningful cost offsets remains an open question because clinical trials do
not measure health care costs, trial populations may differ from real-world users, and off-
sets depend critically on whether patients persist with treatment, since health gains appear
to fade after discontinuation (Wilding et al. 2022).

In this paper, we measure cost offsets associated with GLP-1 use by estimating how
initiating GLP-1 treatment affects subsequent spending on both GLP-1s and non-GLP-1
health care, accounting for non-adherence and discontinuation through an intent-to-treat
design. We study past and future insurance claims for approximately 537,000 patients initi-
ating GLP-1 treatment between 2017 and 2022, using a staggered difference-in-difference
design that compares patients who initiate in a given month to patients who initiate at a
later date. Our main result is that GLP-1 initiation does not lead to reductions in other
health care spending and in fact increases it. This result holds across subpopulations of
patients with a wide range of baseline health conditions and persists for at least five years
after initiation. The modal patient in our sample has a type 2 diabetes diagnosis, but our

1. During our study period (2017 to 2023), GLP-1 therapieswere indicated primarily for type 2 diabetes and
weight management. Because type 2 diabetes and obesity share key behavioral and metabolic risk factors,
we consider both conditions in this study, despite differences in dosing, formulation, and insurer coverage
across indications and over time.
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results are informative about cost effects of GLP-1 use for obesity as well. Obesity is highly
prevalent in our sample and key GLP-1 therapies for diabetes and obesity rely on the same
active molecules, despite differences in dosing and regulatory labeling.

These results are central to ongoing discussions about insurance coverage of obesity
treatment medications, particularly GLP-1s. Currently, public and private payers gener-
ally cover GLP-1s for type 2 diabetes and certain cardiovascular indications while cover-
age for obesity treatment is less common. By statute, Medicare Part D excludes coverage
for obesity treatment medications (Social Security Act 2003). In Medicaid, 38 states do
not cover GLP-1 medications for obesity treatment (Williams, Rudowitz, and Bell 2024).
Among employers with 200+ employees, about 20% of plans cover GLP-1s for obesity,
and coverage has grown substantially among large employers (Claxton et al. 2025). There
is increasing pressure to expand coverage. Federal employee health plans are required to
cover GLP-1s for obesity (U.S. Office of Personnel Management 2014, 2022), and the Na-
tional Conference of Insurance Legislators has encouraged regulators to facilitate coverage
of anti-obesity treatments (National Conference of Insurance Legislators (NCOIL) 2015). In
late 2024, CMS proposed requiring Medicaid coverage and permitting Medicare Part D to
cover obesity treatment medications (Centers forMedicare &Medicaid Services 2024); the
National Association of Medicaid Directors recommended against the change, citing fiscal
concerns (National Association of Medicaid Directors 2025). Concerns about cost are the
central reason payers have resisted broader coverage.

Cost offsets are a potentially important source of savings, but existing approaches to
estimating offsets rest on strong assumptions. Several papers use simulation methods to
project cost offsets implied by health improvements observed in clinical trials (Ward et
al. 2023; Atlas et al. 2022; Hwang et al. 2025). The Congressional Budget Office adopts a
similar approach (Congressional Budget Office 2024). These simulations model healthcare
spending as a function of health status. GLP-1s are assumed to affect spending primarily
by changing the probability of transitioning to more acute health states. As a result, these
models require assumptions about how GLP-1s affect health state transitions, how health
states translate into health care spending, and how long patients persist in GLP-1 treatment

Our approach avoids these challenges by directly estimating the spending effects of
GLP-1 initiation, following patients for up to five years post initiation. We implement a
patient-level staggered adoption design. For our one-year follow-up analysis, we compare
patients who initiate GLP-1 treatment in a given month-year to a control group of patients
who initiate GLP-1 treatment 12months later. In our five year follow up, eachmonthly GLP-
1 initiation cohort is compared to a control group that initiates GLP-1 treatment 60 months
later. Using Wing, Freedman, and Hollingsworth (2024), we combine all initiation cohorts
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using a stacked difference-in-differences (DID) estimator. This study design leverages pa-
tients who will eventually initiate GLP-1s as a comparison group for those who initiate ear-
lier. The DID design has advantages over cross-sectional matching designs because it is ro-
bust to confounding from time invariant differences between treatment and control groups
that are hard to adjust for using measured covariates. It also removes confounding from fac-
tors that could bias a simple pre-post comparison, including secular trends, maturation and
aging, and regression-to-the-mean effects, yielding a more credible causal estimate. To ac-
count for non-adherence, we take an intent to treat approach in our main analysis, tracking
subsequent spending of all GLP-1 initiators, including those who discontinue therapy. The
stacked DID design relies on the standard assumption that absent initiation, early and later
adopters would have followed parallel trends, and that there are no anticipation effects
around the timing of initiation.

We implement this design using 2016-2023 insurance claims from the Merative Mar-
ketScan database, extracting a sample of 750,000 patients initiatingGLP-1 therapy and con-
tinuously enrolled over the pre- and post-initiation period under study. Patients initiating
GLP-1 treatment earlier (the treatment group) have higher baseline health care spending
and greater prevalence of chronic conditions. Consistent with our identification assump-
tions, we find parallel trends in health care spending in the months leading up to initiation.

Wemake twomain contributions with these data. First, we provide real-world evidence
on the dynamics of spending and utilization following GLP-1 initiation in routine clinical
practice. In the month of initiation, patients spend nearly $1000 on GLP-1s. In the fol-
lowing months, however, many patients do not renew their prescription, and the share
of initiators remaining on treatment stabilizes at about 60 percent. Accounting for this
limitation continuation, cumulative GLP-1 spending in the year following initiation totals
$6500, which is roughly half of total medical spending in the year prior to initiation. Five
years post-initiation, cumulative GLP-1 spending totals $22,000 per initiator. This finding
is important because clinical trials—which are designed to promote medication adherence—
nevertheless report high rates of side effects, especially gastrointestinal discomfort (Steven
P. Marso, Gary H. Daniels, et al. 2016; Steven P. Marso, Stephen C. Bain, et al. 2016b; Lin-
coff et al. 2023). How these side effects translate into medication adherence is not well
understood, which matters for assessing cost offsets because non-adherence reduces the
health effects of GLP-1 use as well as GLP-1 spending. Simulation studies of GLP-1 offsets
must make assumptions about treatment adherence (Ward et al. 2023; Ippolito and J. Levy
2023; Congressional Budget Office 2024; Hwang et al. 2025). Our study provides direct
real-world evidence that discontinuation is important in practice.

Our second contribution is to show that GLP-1 initiation does not reduce other health
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care spending and, indeed, increases it. While initiation does produce savings in the form
of reduced spending on other diabetes drugs, these savings are more than countered by
a large increase in outpatient spending, which drives the overall positive result in GLP-1
spending. Increased outpatient spending likely reflects monitoring costs of GLP-1 use as
patients check in with their prescriber to manage and adapt to side effects and dosing.
While our main results look at spending effects after one year, we find no evidence for cost
offsets even five years post-initiation, where we estimate a cumulative $6800 increase
in non-GLP-1 spending, again driven by increased outpatient spending. When we explore
subpopulations defined by baseline health, we see similar results. Among patients with pre-
initiation diagnoses of diabetes, indicators of cardiovascular disease, or neither condition,
GLP-1 initiation increases non-GLP-1 health care spending. However, when we look at
newer-generation GLP-1s for which we can apply our research design, we find statistically
insignificant estimates of partial offsets.

Our results have two important limitations. First, we are only able to examine spending
for five years after initiation; it is possible that important offsets materialize over a longer
horizon. Even so, these five-year effects are important for the cost of coverage. Second,
much of our data predates thewidespread approval, uptake, and coverage of GLP-1s specif-
ically indicated for obesity. It is possible that future molecules will produce large offsets or
that patients with obesity will eventually show larger cost offsets. We expect, however,
that short and medium term cost offsets would be greater for patients with diabetes, who
have worse baseline health and higher health care spending.

Overall, our results show that the cost of covering GLP-1s exceeds the already substan-
tial direct costs of drug procurement. These results contrast with the impressive reductions
in stroke and heart attacks observed in clinical trials. (Steven P. Marso, Gary H. Daniels, et
al. 2016; Steven P. Marso, Stephen C. Bain, et al. 2016b), and contrast with simulation
studies suggesting substantial offsets by five years post initiation (Hwang et al. 2025; Con-
gressional Budget Office 2024). Our study does not fully identify the mechanisms under-
lying the divergence between the simulation-based projections and our results. However,
we highlight two channels that may be important. First, in clinical trials establishing that
GLP-1s reduce rates of major adverse cardiac events, the patients were substantially sicker
than the typical patient in our population, leading to greater scope for improving health and
reducing spending. Second, simulation studies may not be designed to account for extra
outpatient visits required for monitoring GLP-1 use, the primary source of the increased
spending we observed.
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Related literature—Our paper provides among the first quasi-experimental evidence on how
GLP-1 initiation affects health care spending. Two contemporaneous studies examine closely
related questions using different data and identifying strategies.2 Bock, Moshfegh, and
Zhang (2025) use electronic medical records to study the addition of semaglutide the Vet-
erans Health Administration formulary in 2020. They use an event study framework with
the 2021-2022 GLP-1 prescribing rate of the patient’s 2018 primary care provider as a
“bite” variable. They find patients of high-prescribing providers lost 2.45% more weight
and realized better glycemic control (A1C fell 0.11 points), but they find no significant
changes in non-GLP-1 spending or utilization. Like ours, their research design allows for se-
lection on unobservables into GLP-1 treatment. Wennberg et al. (2025) use a selection-on-
observables identification strategy to analyze commercial claims, defining treated patients
as GLP-1 initiators (2017–2024) and constructing matched controls by assigning pseudo
index dates to non-users, exact matching on pseudo index date, basic demographics and
obesity and diabetes diagnoses, and then propensity score matching on a rich set of diag-
noses and prior medications. They find non-GLP-1 medical spending is 5.8% higher for all
GLP-1 initiators, and 8.9% higher for GLP-1 initiators without diabetes.

Despite differences in methods, data, and patient populations, all three studies find little
evidence that GLP-1 drugs substantially reduce other health care utilization and spending.
The matching study by Wennberg et al. (2025) relies on the strong assumption that GLP-
1 use is as good as random in their matched sample; our stacked DID design uses future
adopters as controls and accounts for common time trends and time-invariant differences.
Our design estimates treatment effects as a function of time since patient-level GLP-1 ini-
tiation. This matters because discontinuation rates vary with side effects and other factors,
and because health benefits and potential cost offsets may take time to materialize. In
contrast, Bock, Moshfegh, and Zhang (2025) index effects to calendar time following the
2020 formulary change and use provider prescribing intensity for exposure. As a result,
their post-2020 coefficients blend outcomes for patients starting, continuing, or discon-
tinuing GLP-1 therapy rather than isolating trajectories relative to each patient’s initiation.
However, Bock, Moshfegh, and Zhang (2025) demonstrate health benefits in a real-world
setting, which we cannot measure in claims data.

Our study also contributes to broader research on cost offsets in health insurance and
the economics of obesity treatment. Glazer andMcGuire (2012) argue that cost offsets rep-

2. In addition, Akpan et al. (2026) use MEPS data and regression adjustment to find substantial spending
increases for GLP-1 users with diabetes, inclusive of GLP-1 spending. Michalak et al. (2025) use claims data to
study a highly selected sample of 770 adherent semaglutide 2.4mg userswith cardiovascular disease and over-
weight/obesity, match them to 3,080 controls via propensity scores, and find 22% lower non-pharmaceutical
spending in the treatment group.
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resent a fiscal externality relevant for the welfare consequences of changing insurance cov-
erage, and Starc and Town (2020) study the role of externalities created by standalone drug
plans in Medicare Part D. Prior work finds substantial cost offsets from prescription drugs
in some contexts, but not in others. Chandra, Gruber, and McKnight (2010) and Gaynor, Li,
and Vogt (2007) show that increased drug cost-sharing led to substantial increases in other
forms of medical care. Lichtenberg (2007) estimates that newer drug vintages substantially
reduce non-drug expenditures, with estimated offsets exceeding 100 percent. Several stud-
ies find that the introduction of Medicare Part D increased utilization of prescription drugs
and reduced other health care spending and utilization (Kaestner, Schiman, and Alexander
2019; Afendulis et al. 2011; Zhang et al. 2009), though others find limited offsets from Part
D or other expansions (Liu et al. 2011; Kaestner and Khan 2012; Duggan 2005). Weiner
et al. (2013) find that bariatric surgery does not reduce overall health care costs in the long
term; in a similar analysis, Crémieux et al. (2008) find bariatric surgery recovers initial costs
within two to four years. Our study adds to this literature by examining cost offsets for
GLP-1 medications, a costly but highly effective new treatments for obesity and diabetes.

On the economics of obesity, Cutler, Glaeser, and Shapiro (2003) and Lakdawalla and
Philipson (2009) argue that rising obesity is rooted in technological changes that have re-
duced food prices and time costs of calories. A natural policy response is to tax calories, and
in particular sugar-sweetened beverages. Allcott, Lockwood, and Taubinsky (2019) analyze
the efficiency and incidence of such taxes, Dubois, Griffith, and O’Connell (2020) study
their targeting, and many papers study their consumption effects (e.g. Fletcher, Frisvold,
and Tefft (2015) and Cawley et al. (2019)). Research by economists and other social scien-
tists has focused on the social and behavioral determinants of obesity, in part because few
pharmaceutical and medical interventions have been effective at weight loss and chronic
weight management. The development of new GLP-1 drugs may represent an important
shift towards more medicalized responses to obesity. Cawley and Meyerhoefer (2012) ar-
gue that obesity has a large causal effect on health care spending, an externality because
these costs are borne by public and private insurers. Bhattacharya and Bundorf (2009)
show that obese workers with employer-sponsored health insurance pay for their higher
expected medical expenditures through lower wages, suggesting that labor markets par-
tially internalize obesity-related health costs. Our study shows that GLP-1 drugs increase
rather than decrease total healthcare spending. Covering these drugs may further increase
the costs of providing insurance to people with obesity or diabetes, potentially amplifying
wage responses.
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2— Background
GLP-1swere originally developed to treat type 2 diabetes, a disease characterized by insulin
resistance and eventually insulin deficiency.3 Insulin enables cells to take up glucose from
the bloodstream, regulating blood glucose levels. Insulin resistance means that cells do
not respond to insulin and are slow to take up blood glucose. Glycemic control refers to
the regulation of blood glucose and is commonly assessed using hemoglobin A1c (HbA1c),
which reflects average blood glucose over the prior 2–3 months. HbA1c levels of 5.7–6.4
percent are classified as prediabetes, and levels of 6.5 percent or higher meet diagnostic
criteria for diabetes (American Diabetes Association 2014). Poorly managed diabetes can
lead to numerous severe health problems, including nerve damage, heart disease and stroke,
kidney disease, and low vision or blindness (National Institute ofDiabetes andDigestive and
Kidney Diseases (NIDDK), National Institutes of Health 2025).

Prior to the development of GLP-1s, the main drug for managing type 2 diabetes was
metformin (American Diabetes Association 2010), which reduces both HbA1c levels and
diabetes-related mortality (UK Prospective Diabetes Study (UKPDS) Group 1998). A series
of clinical trials has established that GLP-1s are highly effective for glycemic control (Yao et
al. 2024) in a patientswith Type 2Diabetes. Since the first GLP-1, exenatide, was brought to
market in 2005, successive generations have been developed, with increasing effectiveness.
Next generation GLP-1s liraglutide (approved in 2008) and semagluide (approved in 2017,
marketed as Ozempic for diabetes and Wegovy for weight loss) have also been shown to
reduce major adverse cardiac events—heart attack, stroke, or death—among patients with
type 2 diabetes at high risk for these events (Steven PMarso, Gilbert H Daniels, et al. 2016;
Steven P Marso, Stephen C Bain, et al. 2016a). Although GLP-1s were developed to treat
diabetes, clinical trial participants noticed weight loss of 2-5 percent, prompting investiga-
tors to consider whether higher-dose GLP-1s could produce larger weight loss (Drucker
2024). Subsequent trials found weight loss of 10-15 percent in patients with and without
type 2 diabetes (Wilding et al. 2021). GLP-1s for weight loss have been shown to reduce
cardiavoscular outcomes for patients without diabetes and with a risk of cardiovascular dis-
ease (Lincoff et al. 2023). Treating pre-diabetic patients with GLP-1 substantially reduces
transition to diabetes (Le Roux et al. 2017; Kahn et al. 2024; Jastreboff et al. 2025).

In light of their impressive clinical performance, GLP-1s are now widely prescribed, and
spending on them is rapidly growing. Figure 1 shows that spending onGLP-1s has become a
major component of overall pharmaceutical spending, inMedicaid, Medicare, and especially

3. There are two major variants of diabetes. Type 1 diabetes is relatively rare and occurs when the body is
unable to produce insulin.
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commercial insurance (as measured in Marketscan), where one in every eight dollars of
pharmaceutical spending goes to GLP-1s. Over most of this period, the rapid spending
growth primarily reflects the widespread adoption of GLP-1s as a treatment for diabetes.
More recent growth in the commercial sector reflects additional growth due to GLP-1s
as treatment for obesity. Indeed, GLP-1s have become part of the standard of care for
managing diabetes — typically in combination with metformin — as an initial therapy for
patients (especially those at risk of chronic kidney disease or cardiovascular disease) and as
a secondary therapy for low risk patients for whom metformin is inadequate for glycemic
control goals (American Diabetes Association Professional Practice Committee 2025).

Beyond cost, the main barriers to GLP-1 use are delivery mechanism and side effects.
Currently available GLP-1s are delivered via injection.4 More than half of trial participants
report experiencing gastro-intestinal distress (Drucker 2024). In clinical trials this is often
a reason for discontinuation (Wilding et al. 2021). In practice, these side effects may limit
treatment persistent, but they may also prompt patients and physicians to adjust dosage
rather than discontinue.

The potential for downstream cost savings from GLP-1s is somewhat ambiguous, given
existing research. On the one hand, reductions in major adverse cardiac events might be
expected to reduce hospitalizations and follow up health care use, generating savings. In
the longer run, it is possible that weight loss, better glycemic control, and reduced diabetes
incidence could prevent more severe health conditions, which might lead to substantial
savings. On the other hand, treatment discontinuation implies that some payment for GLP-
1s does not produce long-term health improvements. In addition, the required follow-up
care to adjust dosage and monitor the side effects of GLP-1s could even increase spending.
We therefore turn to estimating the downstream cost consequences of GLP-1 use.

3— Empirical Strategy
We estimate the causal effects of GLP-1 initiation on subsequent health care spending and
GLP-1 persistence using a person-level staggered adoption design implemented using com-
mercial health insurance claims data. The design is organized around a sequence ofmonthly
GLP-1 initiation cohorts: groups of patients who start taking GLP-1s for the first time in a
specific calendar month and year. For each cohort, we construct a “not-yet-treated” con-
trol group of patients who first initiate GLP-1 treatment in the same calendar month in a
subsequent year. We follow both groups for a fixed window before and after the focal
treated cohort’s initiation date, taking care to ensure that the entire post-period occurs be-

4. Early generations of GLP-1s required daily injections but the current generation requires weekly injec-
tions, and an oral GLP-1 has recently been approved.

8



fore the control group begins GLP-1 treatment. Each monthly GLP-1 initiation cohort and
its not-yet-treated clean control represents a sub-experimental DID design with no stag-
gering. We combine the family of sub-experiments into a single stacked analytic file and
estimate treatment effects using a weighted stacked event study regression, following the
approach developed in Wing, Freedman, and Hollingsworth (2024). We implement two
versions of the design: a short-run analysis with one year of follow-up and a longer-run
analysis with five years of follow-up. This section develops notation and lays out key in-
clusion criteria, identifying assumptions, causal effects, and econometric estimators. We
discuss the insurance claims data we used to operationalize the design in section 4.

3.1. Dynamic Treatment Effects of GLP-1 Initiation

The spending consequences of GLP-1 initiation are likely to be dynamic because GLP-1
costs are frontloaded and benefit may be backloaded. Since some patients will initiate but
not persist in treatment, direct costs in the first few months post-initiation are likely to be
especially high. GLP-1 induced reductions in downstream spending — if there are any —
would likely take time to appear because they require health improvements which do not
necessarily occur immediately. Indeed, microsimulation models of GLP-1 effects generally
point to benefits which grow over time (Atlas et al. 2022; Hwang et al. 2025). Therefore an
important feature of any estimator of the effect of GLP-1s on downstream spending is that
it account for dynamic treatment effects. Our estimator does so because it lets us recover
causal effects of GLP-1 initiation in each post-initiation time period.

To see how, use i to index individuals in our study population and t to index calendar
months. Ai is the month-year of the person’s first GLP-1 prescription. Yit(a) is a potential
outcome that represents person i’s health care expenditures or GLP-1 utilization in calendar
period t if she had first initiated GLP-1 therapy in period a. Yit(0) is the same person’s
outcome in the absence of GLP-1 therapy. Person i′s realized outcome is Y obs

it = Yit(0) +∑
a 1(Ai = a) × [Yit(a) − Yit(0)].
We focus on the average causal effect of initiating GLP-1 treatment at a particular date

on downstream health care spending and GLP-1 use using an event time perspective. For
GLP-1 initiation in period a, let e = t−a measure event time in months relative to initiation.
From the event time point of view, ATT (a, a + e) = E [Yi,a+e(a) − Yi,a+e(0)|Ai = a] repre-
sents the average treatment effect of initiating GLP-1 therapy in period a on outcomes
experienced in period t = a + e among people who actually start taking a GLP-1 in period
a. This parameter is the so-called group-time average treatment effect on the treated for
people who started taking a GLP-1 at a measured e months the initial dose. For example,
ATT (a, a) is the effect of initiatingGLP-1 treatment in themonth of initiation,ATT (a, a+11)
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is the effect a year later, and ATT (a, a + 59) is the effect five years later.

3.2. Estimation via Differences in Differences

Although these group-time ATTs are not directly identified because they depend on coun-
terfactual outcomes, we can recover group-time ATTs using difference-in-difference iden-
tification assumptions. To do so, it is helpful to define a sub-experimental data set for each
initiation cohort. In sub-experiment a, the treatment group consists of people with Ai = a

and the clean control group consists of not-yet-treated people with Ai = a + δ, where δ in
a positive integer measuring how many months downstream the control group will initiate
treatment. In other words, the control group consists of people initiating exactly δ months
after the focal treatment group. Each sub-experimental data sets is perfectly balanced in
event time. In the 12 month design, for example, each individual member of the treatment
group and clean control is observed for exactly 24 event time periods: 12 pre-treatment
periods, and 12 post treatment periods.

We face a trade-off in selecting a value for δ because it determines the maximum post-
period over which the clean controls will remain untreated. A larger value of δ allows us
to estimate event studies with a longer follow up window. But a longer follow up also
results in smaller sample size because more recent GLP-1 initiation cohorts will not have a
feasible control group that can be followed for the full post-period. To balance this trade-
off, we work with two extreme values for δ: 12 months and 60 months. The δ = 12 month
case means that the January-2018 initiation cohort is paired with the January-2019 cohort,
and monthly outcomes in both groups are followed from January 2017 to December 2018.
The same logic applies to each of the 72 monthly initiation cohorts from January-2018 to
December-2023, collectively yielding a large sample size and improving statistical precision.
Since our claims data end in 2024, in the δ = 60 months design, we are limited to the 12
monthly cohorts that initiate GLP-1 treatment in 2018. Each of these groups is paired with
initiators from the corresponding month in 2024. Although the 60 month design produces
a smaller sample size, it allows us to examine treatment effects up to five years after GLP-1
initiation.

To identify the group-time ATTs of a given sub-experiment, we require three standard
difference in differences (DID) assumptions: no spillovers, no anticipation, and common
trends. The no spillovers assumption implies that GLP-1 utilization in treatment group does
not affect health care spending amongmembers of the clean control group. The no-anticipation
assumption requires that the average causal effect of initiating GLP-1 treatment in period
a on health care expenditures in periods t < a is equal to zero. Formally, this implies that
E [Yi,a+e(a)|Ai = a] = E [Yi,a+e(0)|Ai = a] for all e < 0. In practice, we guard against limited
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anticipation by setting the baseline pre-period in our DID estimator to be two periods prior
to treatment exposure. The common trend assumption requires that in the absence of GLP-
1 initiation, the treatment group and clean control group would have followed a common
trend so that E [Yi,a+e(0) − Yi,a−2(0)|Ai = a] = E [Yi,a+e(0) − Yi,a−2(0)|Ai = a + δ].

Under these assumptions, a standard DID applied to observed outcomes for a specified
event time period and sub-experiment identifies the group-time ATT:

θDID
(a,e) = E

[
Y obs

i,a+e − Y obs
i,a−2|Ai = a

]
− E

[
Y obs

i,a+e − Y obs
i,a−2|Ai = a + δ

]
= ATT (a, a + e)

Together, the common trends and no-anticipation assumptions imply that group-time
ATTs from pre-treatment time periods estimates should equal zero. Diverging trends in the
pre-period would suggest a violation of the no anticipation and/or common trend assump-
tions. In our empirical work, we estimate event studies that examine DID comparisons
across each period of the pre-treatment window, providing a partial test of the core identi-
fying assumptions.

3.3. Aggregation and Stacked Estimation

The staggered adoptionDID design identifies group-time ATT formultiple initiation cohorts
at multiple follow up time periods. But these group-time estimates are apt to be noisy.
Rather than study each sub-experiment in isolation, we combine the sub-experiments and
focus on estimating an aggregateATTparameter. UseΩ to represent the set of sub-experimental
initiation cohorts in our analysis, and let NGLP

a = ∑
i 1(Ai = a) be the number of individuals

initiating a GLP-1 in period a ∈ Ω. Then NGLP = ∑
a∈Ω NGLP

a is the total number of people
who initiate a GLP-1 in any of our sub-experimental initiation cohorts. We focus on the
following aggregate ATT:

θe =
∑
a∈Ω

ATT (a, a + e)NGLP
a

NGLP

In words, θe is a event-time specific weighted average of underlying group-time ATTs.
Each of group-time ATTs is weighted by its share of the overall treated sample. Larger
initiation cohorts get more weight in the aggregate than smaller initiation cohorts.

To estimate the aggregate ATT parameter, we vertically concatenate the collection sub-
experimental datasets into a single stacked analytic data set. In the stacked data set Y obs

iae
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represents the observed outcome for person i in sub-experiment a measured at event time
e = t − a. We let GLPia = 1 [Ai = a] be a dummy variable set to 1 if the person is a
member of the treatment group in sub-experiment a, and set to 0 if the person is a clean
control for that sub-experiment. Then NGLP

a = ∑
i 1 [GLPia] gives the number of treated

units in sub-experiment a, and NC
a = ∑

i (1 − GLPia) gives the number of clean controls
in sub-experiment a. The total number of treated and control subjects in the stacked data
are NGLP and NC , and the stacked data set is balanced in the sense that each of subjects
is observed in each of the event time periods.5

We estimate the aggregate ATT effects using a saturated event study regression fitted
to the stacked data set:

Yiae = α0 + α1GLPia +
∑

h=−12...δ
h̸=−2

θe · GLPia × 1[e = h] + me + uiae,

In the equation, me represents a full set of event time main effects. Throughout, the pre-
period covers the 12months leading up theGLP-1 initiation andwemake event time period
-2 to be the reference group, allowing some limited anticipation in the month immediately
preceding GLP-1 initiation.

If the share of treated and control observations was the same in each sub-experiment,
the coefficients from the saturated event study would equal the aggregate ATT parameter
presented above. In practice, the share of treated and control observations differs across
sub-experiments and so the simple stacked event study does not quite recover the aggre-
gate ATT parameter. To account for these different shares, we use the following corrective
sample weight:

Qia =

1 if GLPia = 1
NGLP

a /NGLP

NC
a /NC if GLPia = 0

Wing, Freedman, and Hollingsworth (2024) show that under the common trend and
no-anticipation assumptions, the interaction terms in this weighted regression identify the
aggregate ATT parameter evaluated at each event time. The post-period coefficients are
intent to treat estimates that capture the spending effects of initiating GLP-1 therapy over

5. Concatenating multiple sub-experiment data sets means that many people will be in our data set twice,
once as in a treatment group and once in a control group. Our cluster-robust standard errors allow for within-
person dependence, accounting for this.
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the follow up period without making any assumptions about whether or how much each
person actually ends up continuing or discontinuing GLP-1 use. Under the common trends
and no-anticipation assumptions, the pre-period event study coefficients should be equal
to 0, providing a partial test of the core identifying assumptions needed to give the results
a causal interpretation. We estimate standard errors and confidence intervals for the event
study coefficients using a cluster robust variance matrix that allows for heteroskedasticity
and dependence at the person level.

3.4. Spending offsets

We use the event study coefficients to construct measures of GLP-1 spending offsets, un-
derstood as the per-dollar impact of cumulative GLP-1 spending on cumulative non-GLP-1
spending. This is sometimes called a cost offset since it answers the question, howmuch of
each $1 of GLP-1 spending is offset by reductions in other spending (e.g. Chandra, Gruber,
andMcKnight (2010)). To see the idea, let θGLP

e be the aggregate ATT of GLP-1 initiation on
GLP-1 spendingmeasured emonths after initiation and estimated using a weighted stacked
event study regression in which monthly GLP-1 spending is the dependent variable. Simi-
larly, let θspend

e be the aggregate ATT of GLP-1 initiation on ameasure ofmonthly non-GLP-1
health care spending. Our measure of the spending offset is the ratio of the cumulative sum
of monthly spending effects to the cumulative sum of monthly GLP-1 spending:

Offset =
∑

e=1...δ θspend
e∑

e=0...δ θGLP
e

.

An offset of Offset = −1 would imply that the direct costs of the GLP-1 medications
is fully offset by reduced health expenditures in other domains so that each dollar of GLP-
1 spending is matched by a one dollar reduction on non-GLP-1 health care spending. In
practice, we start the numerator sum in event month e = 1 rather than e = 0 because we
find that GLP-1 initiation is associated with a run-up in spending in month e = 0, reflecting
medical visits required to obtain a prescription. This is a conservative choice in the sense
that we do not allow the pure start up costs to drive the results.

To perform statistical inference on the offset statistic, we jointly estimate the GLP-1
spending and non-GLP-1 spending event study regressions as a stacked system. This stack
of stacked regressions yields the identical point estimates of the event study coefficients as
separately estimated regressions, but it also provides a joint cluster robust variance matrix
for the coefficients in the two equations. We use the delta method and the joint covariance
matrix to estimate standard errors and confidence intervals on the on the offset statistic.
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4— Data
Our primary data source is the Merative MarketScan Commercial database covering cal-
endar years 2016–2023. MarketScan is a large administrative sample of individuals with
employer-sponsored commercial health insurance in the United States and includes enroll-
ment records and adjudicated claims for inpatient and outpatient services as well as outpa-
tient prescription drugs. It has been widely used in health economics (e.g. Kowalski (2016),
Dickstein (2017), Sacks (2018), Guo and Zhang (2019), Dickstein et al. (2021), and Dunn,
Hall, and Dauda (2022)). Marketscan’s large sample size and claims history allows us to fol-
low hundreds of thousands of patients who fill GLP-1 prescriptions. We use the enrollment
data and outpatient pharmacy claims to identify GLP-1 medication fills and to define each
individual’s GLP-1 initiation month. Then we construct longitudinal person-month panels
of outcomes and covariates. These person-month panels are the key input to our stacked
staggered-adoption difference in difference study design.

Sample Construction Our staggered adoption research design requires us to identify pa-
tients who initiate GLP-1 therapy in a specific month and then follow them over a period
extending 12 months pre-initiation to 12 months (or more) post-initiation. Appendix Fig-
ure A.1 shows how we construct our study population by applying a series of inclusion
criteria. We start with the full set of 75, 193, 282 unique individuals who were enrolled in a
Marketscan plan at any point between 2016 and 2023, which are the years of Marketscan
we have available. We restrict our attention to the 1, 258, 542 patients who fill at least one
GLP-1 prescription during this time period. To make sure that we can consistently track
spending and utilization, we restrict the sample to the patients who have a single enroll-
ment spell during the study period, yielding a sample of 1, 079, 241 individuals. Because
our analyses require at least a 12 month pre-initiation period, we limit the sample to peo-
ple whose first GLP-1 claim occurs in 2017 or later. This sample of N = 952, 503 people
who initiate GLP-1 therapy between January 2017 and December 2023 forms the donor
pool for our quasi-experimental design. After restricting to patients enrolled throughout
our event-study window and limiting to people ages 18-64, we end up with N = 768, 231
unique patient-cohorts, corresponding to N = 537, 743 unique enrollees.

Forming Sub-Experiments Our research design is organized around a sequence ofmonthly
GLP-1 initiation cohorts running from January 2017 to December 2022. We draw on the
donor pool to build a separate sub-experimental data set for each GLP-1 initiation cohort.
For a generic sub-experiment a, the treatment group consists of people whose first GLP-1
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claim occurs in month-year a, and the control group consists of people whose first GLP-1
claim occurs in month-year a+12 for the one year follow up study andmonth-year a+60 for
the five year follow up. Once people have been assigned to treatment and control groups
for a specific sub-experiment, we restrict the sub-experiment sample to people who were
continuously enrolled in a MarketScan plan and were ages 18-64 for the 24 month event
window centered on period a. Once all of the sub-experimental data sets have been con-
structed, we vertically concatenate them into a single stacked analytic data file. In our main
analysis of our 12 month design, the stacked data file has N = 18, 437, 544 person month
observations spread over 72 sub-experiments that are each made up of a balanced sample
of treated and clean control individuals observed for 24 event time periods.

GLP-1 initiation, use, and spending Our focus is on patients who filled a GLP-1 prescrip-
tion. Appendix Table A.1 lists the set of 172 National Drug Codes (NDC) referring to GLP-1
receptor agonists or related medications that we examine in this study. We classify a pre-
scription drug claim as a GLP-1 claim if it has an NDC code corresponding to any of the 172
medications. Among patients with at least one GLP-1 claim, we define the patient’s GLP-1
initiation date as the date of the first GLP-1 claim following at least 12 months with no
GLP-1 claim. We use information on days supply and date of claim to construct measures
of utilization/adherence over time, defined as having at least one day supply of GLP-1 med-
ication supply available during the month. Supply from earlier refills is carried forward, and
the leftover days are applied to future months. We define GLP-1 spending as the (monthly)
sum of spending on the 172 listed drugs.

Health Conditions We identify certain health conditions using ICD-10-CM codes. We
classify individuals as having a type 2 diabetes diagnosis if they have any inpatient or out-
patient claim with an ICD-10-CM diagnosis code beginning with E11. We identify obesity
using ICD-10-CM codes E660, E661, E662, E663, E668, E669, E66811, E66812, E66813, and
E6689, and BMI codes in the range Z683-Z685. We classify individualswith a cardiovascular
disease (CVD) diagnosis if they have any inpatient or outpatient claimswith a diagnosis code
indicating myocardial infarction (I21–I22, I25.2), ischemic stroke (I63), hemorrhagic stroke
(I61–I62), transient ischemic attack or prior stroke (G45, Z86.73), chronic ischemic heart dis-
ease (I20, I25.1, I25.7, I25.8), peripheral arterial disease (I70.2, I73.8–I73.9), carotid artery
stenosis/occlusion (I65.2–I65.3), or heart failure (I50). We additionally flag chronic kidney
disease (N18.3–N18.6, N18.9) as part of this composite cardiovascular comorbidity indi-
cator. To assess individual baseline health status, we create indicators for whether each
condition was observed at least once during the 12 months before GLP-1 initiation.
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Expenditure Measures We measure five main forms of healthcare expenditures at the
person-month level: (1) total GLP-1 spending, (2) total spending on non-GLP 1 care, (3)
spending on non-GLP-1 diabetes drugs, (4) outpatient spending, and (5) inpatient spending.
Total non-GLP-1 spending is the sum of inpatient, outpatient, and non-GLP-1 prescription
drug claims.

Summary statistics Table 1 shows pre-adoption baseline characteristics forGLP-1 adopters
and their not-yet-treated clean controls. We measure baseline characteristics with demo-
graphics and diagnoses codes, medical events, and spending in event months -12 to -1 (i.e.
before the treated group adopts). The statistics in the table are weighted averages of the
full stack of sub-experiments using the same corrective weights used in the event study
regressions. The treatment group (earlier adopters) are slightly older and in worse health
than the control group (later adopters), with higher rates of type 2 diabetes and obesity and
prior major cardiac events. They have higher health care spending in inpatient, outpatient,
and overall. These differences in baseline health may partly explain their early adoption.
These differences are not a threat to the validity of our design as long as the treated and
control group satisfy the parallel trends and no anticipation assumption, a condition we
verify in our analysis.

5— Results
5.1. Validating identification assumptions

Our empirical strategy relies on the no-anticipation and parallel trends assumptions. To val-
idate these assumptions, we present standard tests of pre-event parallel trends by show-
ing event study plots for each category of non-GLP-1 spending. For reference, Figure 2
shows results from the one year follow up design, and Figure 3 shows results from the
five year follow up design. Panels (a) shows how the treatment group accumulates GLP-1
spending over the post-initiation period, and Panel (b) shows how GLP-1 use tapers off
over the post-initiation period. The remaining panels (c) to (f) are central for assessing our
identification assumptions. They show event-month specific effects of GLP-1 adoption on
non-GLP-1 health care spending. Under our identification assumptions, event-study coef-
ficients should be approximately zero during the pre-initiation periods. The results show
that the estimated pre-event effects are typically small, insignificant, and not increasing
or decreasing systematically prior to GLP-1 initiation. Our main outcome metric, overall
non-GLP-1 spending, is flat through the month prior to initiation. Outpatient spending and
inpatient spending show similar patterns. There are some differences in the pre-period in
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non-GLP-1 diabetes-related prescription spending, but no generally increasing trend. Over-
all, the event-study evidence supports the parallel trends and no-anticipation assumptions.

The event study plots show a temporary elevation in non-GLP-1 spending around the
time of GLP-1 initiation, but this does not indicate a violation of our identification assump-
tions. Specifically, relative to two months before initiation, non-GLP-1 spending increases
by a statistically significant $75 in the month before initiation and by $225 in the month
of initiation, before falling back to trend in the first month after initiation. This increase in
spending likely reflects true costs of initiating GLP-1 coverage - namely, patients will typi-
cally have a health care encounter prior to receiving a prescription. Given delays in filling
prescriptions, some of these encounters occur in the month before initiation. For this rea-
son, we normalize the event-time coefficient at -2 to zero and treat event months -1 and 0
as part of the treatment period.

While it is conceivable that the pre-event increase in spending is driven by worsening
health of the treated patients, this explanation would imply that spending should continue
to diverge rather than revert to trend immediately after initiation, as shown in the figure.
By post-period month 1, patients are treated, so it is conceptually possible that the zero
spending effect in month 1 reflects a combination of cost offsets from GLP-1 use and wors-
ening health. This explanation is unlikely because the health effects of GLP-1 therapy do
not materialize immediately. For example, four weeks into the weight loss trial of semaglu-
tide, treated patients had lost roughly two percent of their body weight, compared to 14
percent at 36 weeks (Wilding et al. 2022). Likewise the efficacy of semaglutide for A1C
management was much greater at 16 weeks than at 4 weeks (Sorli et al. 2017). More gen-
erally, we see flat spending prior to initiation, and a level shift in spending beginning about
2 months post initiation, not the pattern we would expect if gradually worsening health
drove initiation.

Additional evidence rules out the possibility that initiation of GLP-1 therapy is driven
by suddenly worsening health. In our heterogeneity analysis below, we condition on diag-
noses of diabetes or (separately) cardiovascular disease prior to the early initiation. In these
analyses, the treated and control samples both have a diagnosis before initiation among the
treated group. If newly arriving diagnoses were driving GLP-1 initiation, we would expect
different spending dynamics and pre-trends in these subpopulations than in the full sample.
Instead, the estimated spending effects and pre-event trends are very similar across these
subgroups.
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5.2. GLP-1 initiation raises GLP-1 spending with limited cost offsets

We now turn to the effects of GLP-1 initiation. We begin by showing that GLP-1 initiation
leads to steadily growing GLP-1 spending, driven by sustained use of GLP-1s. Panel (a) of
Figure 2 plots the event study estimates for cumulative GLP-1 spending, which is mechan-
ically zero prior to initiation. Spending in the month of initiation is about $1000. Panel
(b) shows how the share of the treatment group sample that has at least one day of avail-
able GLP-1 supply during the month evolves over the year after initiation. The line jumps
from 0 to 100% in the first post-period month because,by construction, all of our treat-
ment group patients fill a prescription for a GLP-1 in their initiation month. The fraction
with an active supply of GLP-1 medication declines over the first few months after initia-
tion, likely because some patients do not tolerate the side effects of GLP-1s. After falling
to 75 percent in one month after initiation and roughly 65 percent in month 3, continued
GLP-1 use falls slowly for the remaining 9 months, ending up at 56 percent one year after
initiation. Spending on GLP-1 accumulates accordingly, growing by about $500 per month
and reaching $6,400 total by month 11.

Total Expenditures The remaining panels of Figure 2 show event study plots for total
non-GLP-1 spending and components of total spending. We begin in panel (c) with total
non-GLP-1 spending, an overall measure that captures the net effect of offsets across all
categories healthcare spending. We see an immediate increase in non-GLP-1 spending in
the month before initiation, and a larger increase in the initiation month. These increases
may reflect triggering events as well as the outpatient visit required for a new prescription.
The spending effects return to 0 in event month 1 and then increase slightly, averaging
about $70 over event months 1-11, reaching a cumulative total of $585 by month 11 (stan-
dard error: $162); see Table 2. This represents about 4 percent of the treated group’s
counterfactual mean total spending of $14,000.6 On net, we find no offsets.

Diabetes-related prescription expenditures The lack of offsets may seem surprising be-
cause one might expect diabetes-related spending on non-GLP-1 drugs to fall as patients
switch to GLP-1s. Indeed we do see such offsets. Panel (d) of Figure 2 shows that spend-
ing on diabetes-related prescriptions (exclusive of GLP-1 spending) falls by about $17 per
month, for first year savings of $189 (standard error: $11). This fall is reassuring as it shows
our design has the power to detect offsets when they are present. It is also small—$189
is small relative to GLP-1 spending (about $6400) or overall non-GLP-1 spending (about

6. To calculate the counterfactual mean, we find the actual mean outcome among the treated group in the
post initiation period, and then we subtract off the average treatment effect.
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$13,000). The small offset in diabetes drug spending is insufficient to generate large over-
all offsets.

Outpatient spending Panel (e) shows that GLP-1 initiation increases overall outpatient
spending. After the spike in month 0 spending (likely driven by the office visit required
for a GLP-1 prescription), outpatient spending remains persistently elevated by about $40
per month, or $438 over months 1-11 (standard error: $75). Higher outpatient spending
is consistent with the possibility that GLP-1 use requires dose titration and monitoring of
side effects. If GLP-1 use does not reduce other office visits sufficiently, this additional care
shows up as increased outpatient spending overall.

Inpatient Expenditures Finally, panel (f) of Figure 2 shows the effects of GLP-1 initiation
on inpatient health care spending. Here we find insignificant and noisy monthly effects,
consistent with the very high variance of inpatient spending. Despite the larger standard
errors, when we aggregate across months, we end up with an overall fairly precise effect of
$252 (standard error: $136), which is not significantly positive, but rules out meaningfully
negative cost reductions.

5.3. Quantifying offsets

In the second row of Table 2, Panel A, we report the offsets implied by our spending ef-
fects. Recall that we find GLP-1 initiation leads to $6,400 in GLP-1 spending over the next
12 months. This direct cost might be offset by reductions in other health care spending.
We have found, instead, spending increases in all categories except non-GLP-1 diabetes
medicine. Scaling the overall spending increase of $585 by the $6,400 increase in GLP-
1 spending, we end up with an offset of about 9 percent. This means that over the first
year after initiation, every $1 of GLP-1 spending generates an extra $0.09 of non-GLP-1
spending. The standard error of the estimated offset is about 2.5 percent, meaning our con-
fidence intervals rule out negative offsets, which would imply cost reductions. (Below we
compare our estimates to predictions from the literature and to offsets estimated in other
contexts.)

5.4. Long run estimates do not point to large offsets

Although some clinical trials of GLP-1s include follow up periods up to 5 years, our small
offset is not a consequence of our shorter, 12 month follow-up period. To show this, we
present estimates from an alternative event study which matches GLP-1 initiators with
controls who initiate 60 months later. To implement this design, we limit the sample to
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patients with 72months of continuous enrollment (from 12months pre to 60months post),
which requires that we look at 2017 and 2018 initiators only (matching them to 2022 and
2023 initiators). The results from the five year follow up are in Figure 3. Panel (c) shows the
event study for total non-GLP-1 spending. The smaller sample size results in wider monthly
confidence intervals. Nonetheless the figure gives no indication that a longer follow-up
period would result in spending reductions. The spending effects in the first year are similar
to our baseline estimates, and then increase in subsequent years, becoming significantly
positive after year 2. We report the cumulative spending effects and implied offsets in Table
2, Panel B. After 5 years, GLP-1 initiation leads to $22,500 in GLP-1 spending. We find a
statistically significant increase in non-GLP-1 spending over this time period, amounting to
$6,800. These five year results imply that cumulative GLP-1 spending increases non-GLP-
1 medical by 30 percent of the GLP-1 spending. The standard error of the offset is about
8.5 percent. Although noisier than the one year estimates, these are still precise enough
to rule out a negative cost offset that might help justify GLP-1 spending on fiscal grounds.
The five year increase in spending is driven by both outpatient and inpatient spending. We
find neither increases nor decreases in spending on other diabetes medicines. Thus over a
5 year time horizon, we find no evidence of cost savings, and indeed continued evidence
that GLP-1s lead to additional spending beyond the direct costs.

5.5. Survivorship bias does not explain our findings

Our main research design compares patients who initiate GLP-1 treatment on a particular
date to those who initiate a year later. A concern with this design is that it conditions on sur-
vival, which itself may be influenced by GLP-1s. To understand the problem, suppose that
GLP-1 utilization increases survival, and spending in the last year of life is especially high.
Untreated patients may have a higher risk of mortality and therefore higher risk of having
very high end-of-life spending. Our research design would differentially exclude these non-
GLP-1 using deceased patients from our control group, resulting in too-low spending in the
controls group and biasing our treatment effects upward.

Although conceptually plausible, this concern is unlikely to be quantitatively important
in our results, for multiple reasons. First, our treatment group is sicker at baseline than our
control group, making extra survival in the treatment group relatively unlikely. Second, mor-
tality effects of GLP-1s are small even in more medically complex populations. Accounting
for these effects, a conservative back-of-the-envelope calculation suggests that survivor-
ship bias can account for less than half of our positive spending effect.7 A final observation

7. Specifically, we assume a differential survival rate of 0.5 percent per year, which is conservative given
clinical trial evidence. Looking at effects of GLP-1s among patients with diabetes, Steven P. Marso, Gary H.
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confirms that survivorship is quantitatively unimportant. When we look at long run effects,
we focus on cohorts that survive for at least 60 months post initiation. If survivorship bias
is important, it should be especially large here. However the first-year effects are smaller
for this cohort than for our main cohort.

5.6. Heterogeneous effects

So far we have estimated overall effects, looking at the entire sample of GLP-1 initiators.
Although this group shows small offsets, it is possible that there are subgroups with larger
offsets. We might expect larger offsets for more medically complex patients, for whom
there is more scope to reduce spending. However, we find no offsets across several impor-
tant subgroups of patients: patients with diabetes or with prior diagnoses of cardiovascu-
lar disease. We also find no offsets among patients without diabetes indications, as well
as patients with obesity indications. Those subgroups are important because they perhaps
more closely resemble the patients who would use GLP-1s for obesity treatment only, a
large population that is more closely the subject of coverage debates. To analyze these
subgroups, we look at subgroups of initiators who have a diagnosis for type 2 diabetes or
for cardiovascular disease in the 12 months prior to initiation. We then match them to a
control group who initiates 12 months later, and who has a diagnosis of the given disease
in the same window (i.e. 12 to 1 month before the early initiation).

Patients with type 2 diabetes We show event studies for patients with diabetes in Figure
4. These patients represent about 55 percent of our sample. Patients with diabetes show a
very similar pattern of GLP-1 spending and adherence (panels (a) and (b)) as our main sam-
ple, and they also show a similar pattern of total non-GLP-1 spending effects. Adherence
falls slightly in the first few months and then more slowly over the next few months. We
find large month 0 spending increases which fall to small but positive and significant lev-
els for the rest of the year. Spending on diabetes-related medication (exclusive of GLP-1
spending) falls in month 1 and remains lower throughout. The fall here is larger than in
our main sample, unsurprisingly, as spending on diabetes-related medication is higher for
patients with diabetes diagnoses. Finally we see the same pattern of persistently elevated
outpatient spending and noisy but positive effects on inpatient spending. Thus we find

Daniels, et al. (2016) do not find any significant reduction in mortality from semaglutide use, and Steven P.
Marso, Stephen C. Bain, et al. (2016b) find 0.4 fewer deaths per 100 patient years. Effects in our sample are
likely to be smaller as our sample is healthier than the clinical trial population. We next assume that spending
in the last year of life is 5 times as large as usual, given that 5 percent of Medicare patients die in a year and
their spending accounts for 25 percent of all spending (Riley and Lubitz 2010; Einav et al. 2018). Thus we
might expect an extra 4 fold in spending among 0.5 percent of patients, or an extra 2 percent of spending
overall. Our actual effect is 4.5 percent.
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overall slightly positive spending effects for diabetics. Table 3, Panel A, reports cumulative
effects and implied percent offsets. After a year, GLP-1 use increases non-GLP-1 spending
by $770 (standard error: $228), despite reducing non-GLP-1 diabetes drug spending by
$301.

Patients with cardiovascular disease Patients with cardiovascular disease represent an
especially medically complex subgroup for whom we might expect to see the most impor-
tant offsets. These patients represent about 17 percent of our sample. We show event
studies for this subgroup in Figure 5. The pattern of results is very similar to our baseline
estimates. We estimate insignificant monthly overall offsets. Clear reductions in spending
on non-GLP-1 diabetes prescriptions are roughly matched by clear increases in outpatient
spending. There is also a noisy increase in inpatient spending. Even this medically vulnera-
ble sample shows no sign of substantial cost offsets. Table 3, Panel B, reports cumulative
effects and implied percent offsets. These estimates are noisier because fewer patients
have a history of cardiovascular disease. Even so the 95% confidence interval for the esti-
mated offset, -0.07 to 0.35, rules out large offsets.

Patients without diabetes We show event studies for a subgroup who are relatively less
medically complex, patientswithout diabetes prior to GLP-1 initiation, who represent about
45 percent of our sample.8 Figure 6 shows no overall offsets but slight reductions in
diabetes-related spending. Here we see no clear increase in outpatient spending, but a
slight increase in inpatient spending after several months, which works out to $654 after a
year (Table 3, Panel C). For this group we also estimate a positive and significant effect on
overall spending.

Patients with obesity diagnosis Next we show event studies for patients with an obesity
diagnosis. Figure 7 shows no clearly elevated non-GLP-1 spending beginning two months
post initiation and, if anything, growing with time since initiation. This increase is driven by
both outpatient and inpatient spending, and slightly offset by falling spending on diabetes
medication. Overall, GLP-1 initiation results in a large increase in non-GLP-1 spending,
equal to about a month of counterfactual spending (Table 3, Panel D).

Patients initially prescribed semaglutide So far we have pooled all patients regardless of
which GLP-1 they were initially prescribed. However, more recent generations of GLP-1s

8. We consider these patients to be less medically complex because they do not have a diabetes diagnosis.
As further evidence of their relative health, note that they have lower counterfactual health care spending
than patients with diabetes or cardiovascular disease.
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may produce different spending consequences due to differences in patient persistence or
health effects, with corresponding implications for downstream health care spending. We
therefore study the subsample of patients who were prescribed semaglutide as their initial
GLP-1. This subsample is especially relevant because semaglutide is the ingredient inOzem-
pic andWegovy, which are widely prescribed today. As semaglutide was not approved until
2017, we have relatively few prescriptions in the early years of our data, limiting the length
of the follow-up period we can consider. We therefore use a follow-up period of δ = 24
months.

We show the event study coefficients in Figure 8 and the cumulative effects and offsets
in Table 4. Spending and persistence patterns for semaglutide are similar to our baseline
results, with spending averaging roughly $500 per month and the fraction of patients with
active supply falling to about 60 percent after a year and then leveling off. Total non-GLP-
1 spending falls by about $40 per month or a statistically insignificant $900 in total. The
95 percent confidence interval for the offset is consistent with an increase in spending of
$0.04 or a decrease in spending of $0.20 per dollar of GLP-1 spend.

5.7. Comparison to other studies of GLP-1 offsets

So far we have found that GLP-1 use results in higher non-GLP-1 health care spending in
the first year of use, for our overall patient population and among patients with or with-
out prior diabetes diagnoses, and even with prior cardiovascular disease, albeit with some
uncertainty for this last group. Looking up to five years out, our estimated cumulative
spending effects are significantly positive, ruling out any cost reductions.

These estimates are arguably disappointing given existing research on potential spend-
ing consequences of patients using or insurers covering GLP-1 medicines. Much of the
existing research on offsets from GLP-1s has focused on simulating the consequences of
Medicare covering anti-obesity medicine. That literature does not directly measure spend-
ing effects. Instead it uses multiple methodologies and assumptions to project health ef-
fects from clinical trials into spending changes. Ippolito and J. F. Levy (2024), for exam-
ple, assume that sustained GLP-1 use reduces the body mass (obesity) index classification
by one category (e.g. from obese to overweight) and, drawing on evidence from Suehs
et al. (2017), assume that each reduction in obesity category reduces annual spending
by $970. More sophisticated approaches draw on microsimulation methods which model
health spending as a function of health status (e.g., hypertensive with diabetes) and model
health status transitions as a Markov process. To use these models to simulate spending
effects of GLP-1 use (or insurance coverage thereof), authors must also make assumptions
about howGLP-1 use affects health status transition rates. Clinical trials provide only imper-
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fect guidance. The literature reports a range of estimates. For example Ward et al. (2023)
estimate that Medicare coverage of GLP-1s would, over 10 years, save $176 billion in non-
GLP-1 cost. (They assume all eligible patients would use GLP-1s and they do not estimate
direct costs.) Atlas et al. (2022) estimate that semaglutide coverage would cost, on a life
time basis, $274,000 in direct drug costs, with a 23% offset. Costs and offsets for liraglutide
would be lower (14% offsets life time). Hwang et al. (2025) estimate $18 billion in offsets
against $66 billion in spending (i.e. 27% offsets) at a 10 year frequency.

To compare our results to these simulations, we need to align time horizons. Many of
the simulations report effects at 10 year horizons or later, which is beyond the scope of
our study. However some simulation studies report shorter run effects. Ippolito and J.
Levy (2023) do not consider time horizons but their methods imply effects could show up
within a year because weight loss happens quickly. Hwang et al. (2025) report effects by
years since initiation. They find savings from reduced non-GLP-1 spending in all years, a
projection that is not consistent with our year 1 impacts. At year 5 they report $8 billion
in savings on $32 billion in spending, a 25% offset. Congressional Budget Office (2024),
drawing on simulations conducted by Atlas et al. (2022), finds $4.3 billion in direct costs
and $0.3 billion in offsets, five years after Medicare coverage of anti-obesity medicine. Our
95% confidence intervals reject these estimates.

Our estimates therefore rule out offsets as large as those predicted by the simulation
studies. Two factors likely explain this difference. First, we find that GLP-1 use actually
increases certain aspects of non-drug spending. This finding drives our offset estimates,
and other studies do not account for the increase in outpatient spending caused by GLP-
1s. Second, the microsimulation approach requires strong assumptions about both how
short-run improvements in weight and diabetes management affect health status transi-
tions, and about the impact of health status on health spending. Our results do not impose
these assumptions and so they suggest these some of the assumptions involved in the mi-
crosimulation projections may not be valid in practice.

While our results are not consistent with projections frommicrosimulation models, they
are broadly consistent with two contemporaneous papers that take an approach that is sim-
ilar in spirit to our work: (Bock, Moshfegh, and Zhang 2025) and (Wennberg et al. 2025).
These studies uses different data and methods (Veterans Affairs and a provider propensity-
to-prescribe design in (Bock, Moshfegh, and Zhang 2025) and private Blue Health Intelli-
gence claims with untreated matched controls in Wennberg et al. (2025) ) but nonetheless
also find no evidence of cost offsets.
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6— Discussion
GLP-1 receptor agonists represent amajor clinical advance for diabetes, obesity, and related
cardiometabolic disease, but they are also among the most expensive drugs in widespread
use. A central question in insurance coverage debates is whether their procurement costs
are partly or fully offset by downstream reductions in other health care spending. We di-
rectly estimate the real-world spending consequences of GLP-1 initiation usingMarketScan
commercial claims and a stacked difference-in-differences design that compares earlier ini-
tiators to later initiators.

Our findings provide little support for the idea that GLP-1s “pay for themselves” in re-
duced downstream medical spending, at least over the five years after initiation. Even ac-
counting for substantial discontinuation rates, people who initiate GLP-1 therapy accrue
substantial GLP-1 spending of approximately $6,500 in the first year and $22,000 over
five years. Despite these high procurement costs, non-GLP-1 spending does not fall and
instead increases modestly on net. We find some evidence that GLP-1 initiation reduces
spending on other diabetes medications, but these savings are more than offset by higher
outpatient spending, consistent with increased levels of monitoring and follow-up care as-
sociatedwithGLP-1 use in practice. Our estimates imply that each dollar of GLP-1 spending
increases other medical care spending by 9 cents over the first year and by 30 cents over
five years. The confidence intervals around both estimates rule out net savings from GLP-1
utilization. When we focus on the most recent generation of GLP-1s for which we have
adequately data, we savings effects that are statistically insignificant. It remains possible
that more recent molecules will produce offsets.

These results do not call into question the health benefits of GLP-1 therapy documented
in randomized trials. They do, however, suggest that the fiscal case for broad coverage
should not rest on expectations of near-term medical cost savings. Indeed, because GLP-1
initiation increases outpatient utilization, the medical spending associated with these drugs
may exceed the sticker price of the prescriptions alone. Cost savings, if they arise, may
materialize only over longer horizons than we can observe in these data or through non-
medical channels.

Looking ahead, key priorities include (i) evaluating longer-run spending and health trajec-
tories asmore cohorts age into sustained treatment, (ii) assessingwhether newermolecules,
dosing regimens, and use for new indications generate different expenditure dynamics, and
(iii) clarifying the mechanisms behind increased outpatient spending and the potential role
of care-management and adherence interventions.
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Table 1—Weighted Baseline Characteristics (12-Month Pre-Adoption) by Treatment
Status, Weighted by Q-weights

Variable GLP-1 Adoption Control

Birth Year (Mean [SD]) 1970.4 (9.7) 1971.0 (10.0)
Age (Mean [SD]) 49.2 (9.4) 48.5 (9.7)
Female (%) 61.7 62.1
Obesity (%) 67.7 60.1
Type 2 DM (%) 68.0 53.6
CVD (%) 18.8 16.3
Inpatient Spending ($) 2517 (17238) 2508 (18528)
Outpatient Spending ($) 6095 (17320) 5852 (17799)
Non-GLP1 Spending ($) 13083 (31211) 12147 (32461)
Non-GLP1 DM Rx Spending ($; Mean [SD]) 1777 (3788) 1278 (3319)
Unique Enrollees (N) 307,616 460,615

Notes: Table reports weighted baseline characteristics measured during the 12 months prior to
initiation (event time −12 to −1). The GLP-1 Adoption group includes early adopters; the Control
group includes matched individuals who initiate one year later (not-yet-treated). Summary
statistics are weighted using Q-weights to balance control group sizes across stacked
sub-experiments. Unique Enrollees in each column reports the number of distinct enrollment IDs
that have ever been observed in the treated and control groups, respectively, while the total
number of distinct enrollees represented in the stacked sample is N = 537,743. Standard
deviations are shown in parentheses for continuous variables.
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Table 2—Cumulative effects of GLP-1 initiation and implied spending offsets

Spending on ....

Outcome: Non-GLP-1 Diabetes (excl. GLP-1) Outpatient Inpatient

Panel A. Full sample, 12 month follow-up
Cumulative GLP-1 spending (periods 0-11): 6,452.1 (SE: 7.12)
Cumulative effect 585.2 -189.0 438.4 252.2

(162.33) (10.87) (74.81) (136.17)
Offset 0.0907 -0.0293 0.0679 0.0391

(0.02516) (0.00168) (0.01160) (0.02110)
Counterfactual mean 1182.2 165.0 548.0 209.1

Panel B. Full sample, 60 month follow-up
Cumulative GLP-1 spending (periods 0-59): 22,542.1 (SE: 96.26)
Cumulative effect 6773.3 237.1 2792.3 2941.7

(1934.28) (196.81) (802.47) (1645.83)
Offset 0.3005 0.0105 0.1239 0.1305

(0.08584) (0.00873) (0.03561) (0.07303)
Counterfactual mean 1231.2 234.8 533.3 192.3

Notes: Each panel is for a different sample and each column for a different outcome. For each
panel, we report cumulative GLP-1 spending as the sum of monthly GLP-1 spending over periods
0-11 for the 12-month follow-up, and periods 0-59 for the 60-month follow-up. We then report
the cumulative effect on each outcome (sum over periods 1-11 or 1-59), and the offset (the ratio
of cumulative spending effects and cumulative GLP-1 spending). The last row shows the
counterfactual monthly mean outcome, the average outcome in the absence of GLP-1 initiation
computed over periods 1-11 or 1-59. Robust standard errors clustered on patient are in
parentheses.
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Table 3—Cumulative effects of GLP-1 initiation and implied spending offsets, by patient
subgroup

Spending on ....

Outcome: Non-GLP-1 Diabetes (excl. GLP-1) Outpatient Inpatient

Panel A. Patients with diabetes
Cumulative GLP-1 spending (periods 0-11): 6,430.0 (SE: 7.84)
Cumulative effect 768.3 -301.4 783.6 161.8

(228.14) (17.33) (100.54) (194.22)
Offset 0.1169 0.0461 0.1215 0.0207

(0.03580) (0.00269) (0.01568) (0.03053)
Counterfactual mean 1297.7 240.8 539.2 256.4

Panel B. Patients with cardiovascular disease
Cumulative GLP-1 spending (periods 0-11): 6,526.5 (SE: 15.96)
Cumulative effect 866.5 -395.8 892.1 315.2

(724.64) (33.69) (264.53) (653.97)
Offset 0.1368 -0.0606 0.1405 0.0468

(0.11213) (0.00518) (0.04077) (0.10131)
Counterfactual mean 2034.3 272.8 893.4 476.9

Panel C. Patients without diabetes
Cumulative GLP-1 spending (periods 0-11): 6,423.4 (SE: 14.65)
Cumulative effect 575.5 -41.2 -48.6 653.8

(202.09) (4.78) (112.93) (154.75)
Offset -0.0867 0.0065 0.0082 -0.1012

(0.03036) (0.00073) (0.01732) (0.02299)
Counterfactual mean 902.7 12.2 544.4 89.4

Panel D. Patients with obesity
Cumulative GLP-1 spending (periods 0-11): 6,603.5 (SE: 8.88)
Cumulative effect 1183.4 -175.1 642.6 640.5

(210.54) (13.04) (99.75) (175.25)
Offset 0.1780 -0.0266 0.0964 0.0969

(0.03184) (0.00197) (0.01508) (0.02650)
Counterfactual mean 1188.0 148.1 574.3 188.8

Notes: See notes to Table 2. This table is identical but it focuses on the 12 months of follow-up
only and each panel reports results from the indicated subsample.

37



Table 4—Cumulative effects of Semaglutide initiation and implied spending offsets

Spending on ....

Outcome: Non-GLP-1 Diabetes (excl. GLP-1) Outpatient Inpatient

Semaglutide sample, 24 month follow-up
Cumulative GLP-1 (Semaglutide) spending (periods 0-23): 11709.8 (SE: 30.90)
Cumulative effect -902.8 -635.2 -97.7 -429.9

(685.25) (50.49) (296.55) (587.12)
Offset -0.0771 -0.0542 -0.0083 -0.0367

(0.05852) (0.00431) (0.02533) (0.05014)
Counterfactual mean 1303.8 194.8 587.0 246.6

Notes: Each column reports results for a different spending outcome using the Semaglutide
first-adoption stacked event-study sample with event time defined relative to the month of first
observed Semaglutide fill. We report cumulative GLP-1 spending as the sum of monthly GLP-1
spending over event-time periods, and the offset (the ratio of cumulative spending effects and
cumulative Semaglutide spending). The last row shows the counterfactual monthly mean outcome,
the average outcome in the absence of Semaglutide initiation computed over periods 1-23.
Robust standard errors clustered on patient are in parentheses.
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Figure 1—Share of prescription drug spending attributable to GLP-1 medications,
2016–2023.

Notes: The figure plots, by year, the share of total prescription drug spending attributable to GLP-1
medications for each payer group (commercial payers in our Marketscan data, Medicare, and Medicaid). For
each payer group-year, the GLP-1 spending share is calculated as GLP-1 prescription drug spending divided
by total prescription drug spending.
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Figure 2—Effects of GLP-1 Initiation on Downstream Health Care Spending – 12 month
follow up

(a) Cumulative GLP-1 Spending (b) Fraction with Active GLP-1 Supply

(c) Total Spending (non-GLP) (d) Diabetes Rx Spending (non-GLP)

(e) Outpatient Spending (f) Inpatient Spending

Notes: Each graph reports event-study coefficients from a stacked saturated specification estimated using

weighted least squares with weights to correct for control group sizes across sub-experiment. The reference
month is event time period -2. Each regression is based on the same balanced panel of N = 18,571,850
person-month observations. Error bars show 95% confidence intervals.
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Figure 3—Effects of GLP-1 Initiation on Downstream Health Care Spending – 60 month
follow up

(a) Cumulative GLP-1 Spending (b) Fraction with Active GLP-1 Supply

(c) Total Spending (non-GLP) (d) Diabetes Rx Spending (non-GLP)

(e) Outpatient Spending (f) Inpatient Spending

Notes: Each graph reports event-study coefficients from a stacked saturated specification estimated using

weighted least squares with weights to correct for control group sizes across sub-experiment. The reference
month is event time period -2. Each regression is based on the same balanced panel of N = 18,437,544
person-month observations. Error bars show 95% confidence intervals.
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Figure 4—Effects of GLP-1 Initiation on Downstream Health Care Spending Among
People With Diabetes

(a) Cumulative GLP-1 Spending (b) Fraction with Active GLP-1 Supply

(c) Total Spending (non-GLP) (d) Diabetes Rx Spending (non-GLP)

(e) Outpatient Spending (f) Inpatient Spending

Notes: Each graph reports event-study coefficients from a stacked saturated specification estimated using

weighted least squares with weights to correct for control group sizes across sub-experiment. The reference
month is event time period -2. Each regression is based on the same balanced panel of N = 10,533,936
person-month observations. Error bars show 95% confidence intervals.
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Figure 5—Effects of GLP-1 Initiation on Downstream Health Care Spending Among
People With Cardiovascular Disease

(a) Cumulative GLP-1 Spending (b) Fraction with Active GLP-1 Supply

(c) Total Spending (non-GLP) (d) Diabetes Rx Spending (non-GLP)

(e) Outpatient Spending (f) Inpatient Spending

Notes: Each graph reports event-study coefficients from a stacked saturated specification estimated using

weighted least squares with weights to correct for control group sizes across sub-experiment. The reference
month is event time period -2. Each regression is based on the same balanced panel of N = 3,136,944
person-month observations. Error bars show 95% confidence intervals.
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Figure 6—Effects of GLP-1 Initiation on Downstream Health Care Spending Among
People Without Diabetes

(a) Cumulative GLP-1 Spending (b) Fraction with Active GLP-1 Supply

(c) Total Spending (non-GLP) (d) Diabetes Rx Spending (non-GLP)

(e) Outpatient Spending (f) Inpatient Spending

Notes: Each graph reports event-study coefficients from a stacked saturated specification estimated using

weighted least squares with weights to correct for control group sizes across sub-experiment. The reference
month is event time period -2. Each regression is based on the same balanced panel of N = 7,903,608
person-month observations. Error bars show 95% confidence intervals.
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Figure 7—Effects of GLP-1 Initiation on Downstream Health Care Spending Among
People With Obesity

(a) Cumulative GLP-1 Spending (b) Fraction with Active GLP-1 Supply

(c) Total Spending (non-GLP) (d) Diabetes Rx Spending (non-GLP)

(e) Outpatient Spending (f) Inpatient Spending

Notes: Each graph reports event-study coefficients from a stacked saturated specification estimated using

weighted least squares with weights to correct for control group sizes across sub-experiment. The reference
month is event time period -2. Each regression is based on the same balanced panel of N = 11,811,168
person-month observations. Error bars show 95% confidence intervals.
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Figure 8—Effects of GLP-1 Initiation on Downstream Health Care Spending among
Patients with an Initial Prescription for Semaglutide Adoption– 24 month follow up

(a) Cumulative GLP-1 Spending (b) Fraction with Active GLP-1 Supply

(c) Total Spending (non-GLP) (d) Diabetes Rx Spending (non-GLP)

(e) Outpatient Spending (f) Inpatient Spending

Notes: Each graph reports event-study coefficients from a stacked saturated specification estimated using

weighted least squares with weights to correct for control group sizes across sub-experiment. The reference
month is event time period -2. Each regression is based on the same balanced panel of N = 9,680,364
person-month observations. Error bars show 95% confidence intervals.
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Figure A.1—Sample construction and eligibility for stacked event-study analysis

1. Base MarketScan population (2016–2023)
All unique enrollees observed at any point in 2016–2023
N = 75,193,282

2. Ever filled a GLP-1 prescription (2016–2023)
At least one outpatient pharmacy claim for a GLP-1 medication
N = 1,258,542

3. Single continuous enrollment spell (2016–2023)
Exclude individuals with multiple disconnected enrollment spells
N = 1,079,241

4. Initiation month in 2017–2023
Define initiation month-year Aj as first observed GLP-1 fill; exclude 2016 ini-
tiators
N = 952,503

5. Eligible for stacked event-study panel (pre12/post12)
Construct stacked event-study panel over t ∈ {−12, . . . , +11} relative to initia-
tion
Stacked analytic sample: N = 782,323
Unique enrollees: N = 547,097

6. Eligible stacked panel, working-age sample (18–64)
Further restrict Step 5 to initiators aged 18–64 at initiation
Stacked analytic sample: N = 768,231
Unique enrollees: N = 537,743

Notes: Counts reflect sequential restrictions applied to the MarketScan population. The final eligible pool
consists of people aged 18-64 with a single MarketScan enrollment spell who started taking a GLP-1
medication between January 2017 and December 2022 and had complete observation of the pre12/post12
event window. Because the analysis stacks multiple sub-experiments, people may appear more than once
and may contribute observations as treated in their own initiation cohort and as controls in earlier cohorts;
therefore, we report both the stacked analytic sample size and the number of unique enrollees represented
in the stacked panel.
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Table A.1—GLP-1 Receptor Agonists and NDC Codes

GLP-1 Type NDC Numbers
Lixisenatide 24576302, 24576105, 24576102, 24576101, 24574702,

24574502, 24574101, 24574000
Dulaglutide 2143301, 2143361, 2143380, 2143401, 2143461, 2143480,

2223601, 2223661, 2223680, 2318201, 2318261, 2318280,
50090348300, 50090348400, 50090546700, 50090645300,
50090645600, 50090657100, 54568043363, 54568043371,
54568043463, 54568043471

Semaglutide 169413001, 169413013, 169413211, 169413212, 169413290,
169413297, 169413602, 169413611, 169418103, 169418113,
169418190, 169418197, 169430301, 169430313, 169430330,
169430390, 169430393, 169430399, 169430701, 169430713,
169430730, 169431401, 169431413, 169431430, 169450101,
169450114, 169450501, 169450514, 169451701, 169451714,
169452401, 169452414, 169452501, 169452514, 169452590,
169452594, 169477211, 169477212, 169477290, 169477297,
50090513800, 50090513900, 50090582400, 50090594900,
50090605100, 70518214300

Exenatide 2021007, 2021008, 2021009, 310651201, 310651285,
310652004, 310652401, 310653001, 310653004, 310654001,
310654004, 310654085, 54868538400, 54868538401,
54868538402, 66029021007, 66029021008, 66780021007,
66780021008, 66780021009, 66780021201, 66780021902,
66780021904, 66780022601, 66914103504, 66914103505,
68258894701, 68258894802, 70121168501, 70121168601

Tirzepatide 2015201, 2015204, 2024301, 2024304, 2115201, 2121401,
2124301, 2134001, 2142301, 2145701, 2145780, 2146001,
2146080, 2147101, 2147180, 2148401, 2148480, 2149501,
2149580, 2150601, 2150661, 2150680, 2200201, 2221401,
2234001, 2242301, 2245701, 2245780, 2246001, 2246080,
2247101, 2247180, 2248401, 2248480, 2249501, 2249580,
2250601, 2250661, 2250680, 2300201

Liraglutide 143914402, 143914403, 169280013, 169280015, 169280090,
169280097, 169291115, 169291190, 169291197, 169406012,
169406013, 169406090, 169406097, 169406098, 169406099,
480366719, 480366720, 480366722, 14403340001,
14403340002, 14403340003, 50090285300, 50090425700,
50090450300, 54569650700
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