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1 Introduction

In a staggered adoption di↵erence-in-di↵erences (DID) design, units are exposed to treatments

at varying times. Until recently, two-way fixed e↵ects (TWFE) regressions were the standard

method of estimating causal e↵ects in these designs. However, recent studies by Goodman-

Bacon (2021) and De Chaisemartin and d’Haultfoeuille (2020) have revealed threats to validity

in the TWFE approach. The main problem is that the within-variation that identifies the

TWFE coe�cients includes comparisons between late and early treatment adopters. These

comparisons may violate the common trend assumption unless treatment e↵ects are constant

over time. The upshot is that the conventional TWFE estimator does not identify a well-

defined average causal e↵ect in the staggered adoption setting, at least under the standard

DID assumptions. In response, several new analytic methods have emerged to support

causal inference in staggered adoption designs (Goodman-Bacon, 2021; De Chaisemartin and

d’Haultfoeuille, 2020; Borusyak et al., 2021; Callaway and Sant’Anna, 2021; Dube et al., 2023;

Gardner, 2022; Wooldridge, 2021).

The stacked DID is one approach to analyzing staggered adoption designs (Cengiz et al.,

2019; Deshpande and Li, 2019; Butters et al., 2022; Callison and Kaestner, 2014). In stacked

DID, researchers construct a separate data set for each valid sub-experiment, excluding

the problematic late-early comparisons. These sub-experimental data sets are vertically

concatenated to form a stacked analytic file. The goal is to estimate an average causal e↵ect

by fitting DID or event study regressions to the stacked dataset. Despite its appeal, the

existing literature has not worked out the precise parameter estimated by stacked DID or

determined whether stacked regressions have a causal interpretation.

In this paper, we clarify the causal estimand of alternative stacked DID estimators in

settings where treatment e↵ects may be heterogeneous across units and time periods. We

state inclusion criteria for building a stacked data set that is trimmed to ensure balance in

the number of pre- and post-periods for each sub-experiment. We then present a new method

of estimating an aggregate average treatment e↵ect on the treated (ATT) parameter using a

single stacked regression that allows for conventional approaches to statistical inference. In

event study form, our approach provides evidence related to both pre-trends and dynamic

treatment e↵ects. The weighted stacked regression we propose identifies an aggregate causal

parameter that we call the trimmed aggregate ATT:

✓e =
X

a2⌦

ATT (a, a+ e)⇥ ND
a

ND
⌦

.
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In the expression, ATT (a, a+e) represents the average causal e↵ect of adopting treatment

in period a on outcomes experienced in period a+ e, among units who are first treated in

period a. ⌦ is a trimmed set of treatment adoption events that excludes any adoption event

where the group-time ATT is not identified for each event time period running from pre

periods before treatment to post periods after treatment. ND
a is the number of units that

adopt treatment in period a, and ND
⌦

is the number of units that ever adopt treatment in

one of the adoption events in the trimmed set. The aggregate parameter, ✓e, is a weighted

average of group-time ATTs, with each group-time ATT (a, a+ e) weighted by the fraction of

all trimmed treated units that adopt in period a. In other words, the aggregate is a kind of

overall ATT.1

The trimmed aggregate ATT has three attributes that make it a good way to summarize

results from a staggered adoption design. First, ✓e is a coherent “causal aggregate” because it

is a convex combination of underlying causal e↵ects. Second, because the measure is computed

from a trimmed set of identified group-time ATTs, changes in the aggregate parameter across

event time periods reflect treatment e↵ect dynamics, rather than compositional changes.

Third, under the DID assumptions, pseudo-ATT e↵ects computed in the pre-treatment

periods should equal zero. Since the composition of the stacked data is stable over event time,

the value of the aggregate in pre-treatment periods measures di↵erential pre-trends, which

would indicate non-common trends, anticipation, or both in one or more sub-experiments.2

We take ✓e to be a target parameter of interest, and we examine the performance of stacked

DID regressions as estimators of the target parameter using data from a staggered adoption

design. We start by analyzing a basic stacked event study regression that is saturated in

both event time and treatment status and is fit to stacked data created using clear inclusion

criteria. We show that the coe�cients from the basic stacked event study regression do not

correspond to our target parameter or to any other convex combination of causal e↵ects.

Even when the DID assumptions hold within each sub-experiment, these stacked regressions

are biased because treatment and control trends are implicitly weighted di↵erently across

sub-experiments. However, the bias is a function of known sub-experimental sample sizes.

We derive sample weights to correct for the imbalance and show that a weighted stacked DID

1
We use the ATT-weighting procedure as our primary example throughout the paper. But it is straightfor-

ward to use our methods to define di↵erent weighting procedures for any weights that are invariant across

event time. For example, in some applications it may make sense to weight the group-time ATTs by the

share of the overall analytic sample used to estimate the group-time ATT. These weights would depend on

both the treatment group and control group share of the overall analytic sample rather than the treatment

group share. Another option would be to weight by population size.
2✓e is similar to the balanced event time aggregate presented by Callaway and Sant’Anna (2021). The

important di↵erence is that our version enforces compositional balance in both a pre-treatment period and

and post-treatment period.
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estimator identifies the target aggregate. In practice, the e↵ects can be estimated by fitting a

saturated event study or a DID regression using weighted least squares. The coe�cients from

the weighted stacked regression correspond to the target aggregate, ✓e.

The trimmed aggregate ATT (✓e) is a reasonable causal aggregate to focus on in applied

work. However, there are other sensible ways to combine estimates from multiple sub-

experiments. For example, two alternatives that seem logical are a population weighted

aggregation and a sub-experiment sample size weighted aggregation. With some simple

alterations to the corrective sample weights, we show that the weighted stacked event study

can also be used to identify and estimate both of these parameters.

Because treatment varies at the group level in staggered adoption designs, it is customary

to estimate standard errors using a cluster robust variance matrix and to treat observations

as independent across groups but dependent within groups. The stacked data sets we

consider in this paper will often include the same group in multiple sub-experiments and may

contain duplicate observations if the same clean controls appear in multiple sub-experiments.

Duplicate observations are an additional reason why the stacked data should be viewed as

dependent across sub-experiments. We argue that it makes sense to cluster at the group

level to allow for dependence across sub-experiments. However, some applications of stacked

DID estimators report standard errors clustered at the group⇥ sub� experiment level. We

report results from a small Monte Carlo simulation study, examining the performance of both

approaches. The results suggest both metrics have accurate coverage when the number of

clusters is not too small.

Other versions of stacked DID estimators have been used in applied work by Cengiz et al.

(2019), Deshpande and Li (2019), Callison and Kaestner (2014), and Butters et al. (2022). Our

approach is closely related but not identical to these applications. Cengiz et al. (2019) and

Deshpande and Li (2019) build the stacked data set using clean controls but do not enforce

inclusion criteria that create compositional balance as we do. Butters et al. (2022) impose

both clean controls and compositional balance. Callison and Kaestner (2014) use individual

level survey data to build a stacked data set with two event times and a matched set of clean

control states. To form the matched state control groups for each sub-experiment, they start

with the set of clean controls and then discard candidate control states where the di↵erence

in mean baseline outcomes between the treated state and the control state was statistically

significant. They estimate treatment e↵ects using a stacked logistic regression model. Cengiz

et al. (2019) report standard errors that cluster at the group⇥ sub� experiment level, while

Callison and Kaestner (2014), Deshpande and Li (2019) and Butters et al. (2022) cluster at

the group level. None of these existing studies derives what parameter is identified by the

stacked regression, or uses the weighting strategy we propose. Interestingly, none of these
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papers uses a fully saturated stacked regression specification. Instead, all four applications use

regression specifications that include group⇥ sub� experiment and time⇥ sub� experiment

fixed e↵ects to model the stacked data.

We examine the stacked fixed e↵ect specification applied to a stacked data set created

using our inclusion criteria. We show that the stacked fixed e↵ect estimator does not

identify our target aggregate parameter. It also does not – in general – identify any other

convex combination of underlying causal e↵ects. Estimating the stacked fixed e↵ect model

using weighted least squares and our proposed corrective weights resolves the problem and

makes the fixed e↵ects redundant. Thus, one contribution of our paper is to show that a

simpler regression specification is all that is required to identify the trimmed aggregate ATT.

However, we also show that the unweighted stacked fixed e↵ect regression does recover the

target aggregate in the special case where the treatment group sample share is fixed across

sub-experiments.

Stacked estimation has several advantages for applied research. It is regression-based,

making it easy to implement and explain to social scientists who are used to working with

regressions. It focuses attention on the underlying research designs and it does not rely

on ancillary assumptions about statistical modeling beyond the standard DID assumptions.

The coe�cients from the weighted stacked model correspond to a well-defined average of

underlying group-time ATT parameters, which is a sensible rationale for using the method.

In addition, the trimmed aggregate ATT parameter provides a summary that is not a↵ected

by compositional change over event time. This makes it suitable for assessing treatment

e↵ect dynamics in the post period, and for assessing the possibility of di↵erential pre-trends

in the pre-period. Finally, the stacked DID framework provides an intuitive platform for

implementing more elaborate research designs. For instance, the common trend and no-

anticipation assumptions may be more credible when applied to a set of clean controls that is

matched on a vector of baseline covariates and outcomes. In principle, a matched comparison

group can be formed for each sub-experiment, building on methods developed in Heckman

et al. (1998); Callaway and Sant’Anna (2021); Callison and Kaestner (2014). The stacked

framework makes it easy to compare estimates from each sub-experiment, which can help

avoid treating the aggregate parameter as a black box.

2 Staggered Adoption Designs

Use s = 1...S to index a collection of groups and t = Tmin...Tmax to index calendar time

periods. Treatment exposure occurs at the group ⇥ time level, and treatment remains in

place until the end of the study period. Let As represent the calendar period when group
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s is first exposed to treatment, and set As = 1 for groups that never adopt treatment

during the study period. Yst(0) represents the outcome group s would experience in calendar

period t under a hypothetical scenario in which group s is never exposed to treatment. Yst(a)

represents the outcome that group s would experience in calendar period t if the group was

first exposed to treatment in calendar period a.

The causal e↵ect of adopting treatment in period a compared to never adopting treatment

is �st(a) = Yst(a)�Yst(0). The realized outcome is Yst = Yst(0)+
P

a �st(a)⇥1(As = a). Most

of the time, the object of interest is an average causal e↵ect, such as the average treatment

e↵ect on the treated (ATT) evaluated at a particular calendar date. In our notation, this

group-time ATT is written ATT (a, a+ e) = E[�s,a+e(a)|As = a], where e = t� a measures

event time centered at the treatment adoption date. Thus ATT (a, a + e) represents the

average causal e↵ect of adopting treatment in period a on outcomes experienced in period

t = a+ e among groups that were first exposed to treatment in period As = a.

The staggered adoption design provides a way to identify these group-time ATT e↵ects

under two main assumptions:

Assumption 1. No Anticipation: The average causal e↵ect of adopting treatment
in period a is equal to zero for all calendar periods prior to period a. This means
that ATT (a, a+ e) = 0 for all e < 0. Equivalently, no anticipation implies that
for periods t0 < a:

E [Ys,t0(a)� Ys,t0(0)|As = a] = 0.

Assumption 2. Common Trends: In the absence of treatment exposure, the average
change across post-treatment time periods would be the same in the treatment
group (As = a ) and the comparison group (As > a). For post-treatment event
periods e >= 0:

E [Ys,a+e(0)� Ys,a�1(0)|As = a] = E [Ys,a+e(0)� Ys,a�1(0)|As > a+ e]

Assumption 1 (no-anticipation) is a version of the strict exogeneity assumption, familiar

from panel data models. The assumption could fail if treatment exposure occurs in response

to volatility in the outcome variable, or if behavior changes due to expectations of future

treatment. We state Assumption 2 (common trends) in terms of a comparison of a specified

adoption group with all groups that have not yet adopted treatment, including both never

treated groups and groups that adopt after the post-treatment period of interest, As > a+ e.
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In practice, researchers may choose to work with a specialized common trends assumption

that only relies on a never treated comparison group.3

2.1 Identifying group-time ATTs

The staggered adoption design may identify multiple ATT (a, a+ e) parameters. The trick is

to use the correct combination of periods and groups. To see the standard argument that a

DID comparison of treated units to a clean comparison group identifies a given ATT (a, a+ e)

parameter, write:

DIDa,e = E[Ys,a+e � Ys,a�1|As = a]� E[Ys,a+e � Ys,a�1|As > a+ e]

= E[Ys,a+e(a)� Ys,a�1(0)|As = a]� E[Ys,a+e(0)� Ys,a�1(0)|As > a+ e]

= E[Ys,a+e(0) + �s,a+e(a)� Ys,a�1(0)|As = a]� E[Ys,a+e(0)� Ys,a�1(0)|As > a+ e]

= E[�s,a+e(a)|As = a] +
�
E[�Y (0)

s |As = a]� E[�Y (0)
s |As > a+ e]

 

= ATT (a, a+ e)

The first equality gives the standard DID in observed outcomes, where the treatment

group consists of all groups that adopt in period a, and the control group consists of groups

that adopt after focal post-period a + e. The second line substitutes potential outcomes,

and imposes Assumption 1 (no-anticipation), allowing Ys,a�1(a) to be replaced with Ys,a�1(0).

The third line rewrites the expression to emphasize causal e↵ects, and the fourth line collects

terms to express treatment group specific time trends, using �Y (0)
s = Ys,a+e(a)� Ys,a�1(0) to

represent the change in untreated outcomes. The term in braces cancels under Assumption 2

(common trends). This shows that the simple DID identifies the group-time ATT.

In a staggered adoption design, one can swap in di↵erent treatment groups and control

groups to identify group-time ATT parameters for each adoption group – simply change the

value of a in the derivation above. Keeping the base period fixed at the last year before

treatment exposure (t = a� 1) and applying the method repeatedly for di↵erent choices of

e traces out the treatment e↵ect in event time for a given adoption group. Setting e < 1

and forming the DID leads to pseudo e↵ects in the pre-period, which should equal 0 under

the common trend and no-anticipation assumptions. Thus, the staggered adoption design

will often identify a family of event time specific ATT (a, a+ e) parameters for each adoption

3
We have used a set up with group and time period observations throughout the paper. But it is

straightforward to extend the approach to cases with individual observations within each group by time cell –

i.e. observations on individual i in state s in year t.
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group. The main constraint on whether the e↵ect is identified for a particular event time is

how far the adoption event is from the earliest and latest calendar date in the available data.

2.2 Two group event studies

The two group event study is a useful special case that helps clarify more complicated

situations. Suppose that Group s = 1 is never treated (A1 = 1) and group s = 2 is treated at

time a (A2 = a), with Tmin < a  Tmax. The pre-treatment period runs from t = Tmin...a� 1

and the post-treatment period runs from t = a...Tmax. Under the no anticipation and common

trends assumptions, ATT (a, a+e) is identified for each event time e = t�a starting e = Tmin�a

periods before treatment exposure and extending to to e = Tmax � a periods after exposure

using the DID comparison DIDa,e = E[Y2,a+e � Y2,a�1|As = a]�E[Y1,a+e � Y1,a�1|As = 1].

Note of course that ATT (a, a+ e) is normalized to zero for e = �1.

In practice, it is convenient to estimate the event study using a saturated linear regression

that traces out the conditional expectation function of realized outcomes with respect to

event time and treatment group membership:

Yst = ↵0 + ↵11[As = a] +
Tmax�aX

h=Tmin�a
h 6=�1

"
�h

�
1[As = a] · 1[t� a = h]

�
+ �h1[t� a = h]

#
+ Ust (1)

The reference group in the specification is the control group in period a� 1, which is the

period immediately before treatment. The model is parameterized so that the coe�cients on

the treatment ⇥ event time interaction terms are DID comparisons at di↵erent follow up times,

each relative to the same reference period. This means that each of the �h coe�cients identifies

a causal e↵ect – �h = ATT (a, a+h) – just as if we had computed each DID comparison using

the relevant group by period means rather than a regression. In applied work, it is common

practice to plot the pre-period and post-period event study coe�cients along with confidence

intervals. Under the null hypothesis implied by the identifying assumptions, the collection of

pre-period coe�cients should be equal to zero, and the post-period coe�cients will trace out

the pattern of time varying treatment e↵ects.

3 Trimming for Compositional Balance

The staggered adoption design is a collection of two group event studies. The main di↵erence

is that in the staggered adoption design the mapping between calendar time and event time is
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not one-to-one across the di↵erent sub-experiments. For example, in a group that first adopts

treatment in 1997, the year 2000 is three years post-treatment. In contrast, for a group that

adopts treatment in 2005, the year 2000 is five years pre-treatment. Calendar time and event

time are separate concepts from the perspective of the overall staggered adoption design.

Another issue is that causal e↵ects may be identified for a larger number of event

time periods for some adoption groups than others. For instance, suppose that group

As = a1 is first exposed only one year before the most recent year of data available so that

a1 = Tmax � 1. The treatment e↵ect for group a1 measured three years after adoption,

ATT (a1, a1 + 3) = ATT (Tmax � 1, Tmax � 1 + 3), is not identified because there is no data

available past Tmax to measure the e↵ect.4 In contrast, suppose group a2 first adopted the

treatment ten years before the final year of data. Then ATT (a2, a2 + e) is identified for every

e = 0. . . 10 provided there are some never treated groups to serve as controls. The same

problem arises in the pre-period: pre-treatment pseudo ATT e↵ects may be identified for

more periods in some sub-experiments than others.

The collection of group-time ATT e↵ects identified by a staggered adoption design can

be unwieldy, especially when there is a large number of treatment adoption events. A

natural impulse is to average the e↵ects into some type of aggregate summary (Callaway and

Sant’Anna, 2021). There are many ways to form an aggregate summary and no one measure

will make sense for every occasion. In this paper, we focus on how an aggregate parameter

might be useful for answering two types of empirical questions that commonly arise in applied

work. First, how do treatment e↵ects evolve over time since adoption? Second, what evidence

exists for or against the validity of the no-anticipation and common trend assumptions? In

the two group event study case, the event study regression coe�cients – presented graphically,

with confidence intervals – are a useful way for assessing evidence relevant to both questions.

One challenge with aggregating group-time ATTs is ensuring that the aggregation proce-

dure preserves the ability to interpret event study results as evidence on di↵erential pre-trends

and dynamic causal e↵ects in the post-period. The main threat is that the composition of

the identified group-time ATTs being averaged together changes over event time periods.

If the collection of group-time ATTs that are being combined changes over event time and

treatment e↵ects are heterogeneous, a naive event time plot can be misleading.

Figure 1 shows a stylized example of a staggered adoption design with three adoption

groups (early, middle, late) and a never treated comparison group. The first panel shows the

time series of observed outcomes in each group over a calendar time period running from

4
This might happen in practice because the data is complete up to the present calendar date and so three

years post treatment has yet to occur. In that case, it may eventually be possible to identify and estimate

the e↵ect as new data becomes available. In other circumstances, data are only available up to period Tmax

and no future data collection is possible. In that case, the e↵ect will remain unidentified with available data.
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Figure 1: The dangers of compositional changes in an aggregate event study in a staggered
adoption design.
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2000 to 2004. Each group has a di↵erent baseline level and the time trend is flat. The early

adoption group receives a negative treatment e↵ect when it adopts in 2001. The middle group

adopts in 2002 and has a small positive treatment e↵ect. And the late adoption group has a

large treatment e↵ect after it adopts in 2003. Thus, in this example, treatment e↵ects are

heterogeneous across groups but they do not change over time within groups. There are no

“dynamic treatment e↵ects”.

The second panel shows average outcomes in the three adoption groups after centering

each group around its adoption year to put the x-axis on event time rather than calendar
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time. The event time graph makes it clear that treatment e↵ects are identified for a di↵erent

range of event times in each group. The early adoption group can be followed four years after

adoption. In contrast, the middle group can be followed three years after adoption and the

late group can only be followed for one year post adoption.

The third panel shows a naive aggregation of treatment e↵ects in event time. These are

simple averages of the identified causal e↵ects in each event time period. But the set of e↵ects

included in the average changes over event time. The fourth panel highlights which of the

three treated units is included in the average.In event times 0 and 1, the average is taken over

all three groups for a net positive e↵ect. In event time 2 only the early and middle groups are

included in the average. And in event time 3 only the early group is included. Even though

treatment e↵ects are time invariant in this example, the naive aggregation strategy makes

it appear as though the treatment e↵ect is initially large and then fades out over time. In

contrast, the compositional changes do not lead to misleading results in the pre-periods in

this example because there is no heterogeneity across groups during the pre-period.

To build an aggregate that avoids the kind of problem shown in Figure 1, we develop

inclusion criteria and use them to construct a trimmed set of sub-experiments that is balanced

over a fixed event time window. The starting point is to define a uniform event window for

the analysis. Use pre and post to represent the desired length of the pre- and post-treatment

period. Then let ⌦A be the set of unique policy adoption dates contained in the staggered

adoption design. ⌦ is the trimmed subset of adoption events for which the ATT is identified

for each event time in the  window. Membership in ⌦ is determined by two inclusion

criteria.

IC 1. Adoption Event Window: The treatment adoption event a 2 ⌦A must occur inside

the  event window. Let IC1a = 1[Tmin + pre + 1  a  Tmax � post � 1] be an indicator

variable set to 1 if adoption event a occurs inside the event window.

IC 2. Existence of Clean Controls: There must be one or more “clean control” units that

can serve as a comparison group in the DID analysis for a treatment adoption event a 2 ⌦A.

Specifically, let IC2a = 1[
P

s 1(As > a+ post) � 1] be an indicator variable set to 1 if there

are any clean controls available for adoption event a.

The trimmed set of adoption events is ⌦ = {a 2 ⌦A|IC1a = IC2a = 1}. Under the common

trend and no-anticipation assumptions, the staggered adoption design identifies ATT (a, a+ e)

for each a 2 ⌦ for each event time e 2 {�pre...post|e 6= �1}, where the event time

period immediately before treatment adoption serves as a fixed reference period in the DID

comparisons.
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Figure 2: Admissible events with a  event window

The  parameters are a research design choice with practical implications because they

control which adoption events are “trimmed” in order to ensure compositional balance. Figure

2 shows how the  window determines which policy changes are admissible under the first

inclusion criteria. The full set of treatment adoption events a 2 ⌦A may occur anywhere

between Tmin and Tmax in the diagram. However, any adoption event that occurs between

before Tmin + pre + 1 occurs too close to the beginning of available data to identify an e↵ect

pre periods in advance of treatment. Likewise, any event that occurs after Tmax � post � 1

occurs too late to be studied for a full post periods after treatment. These events are trimmed.

A shorter event time window may allow more policy events to be studied. A longer window

allows dynamic treatment e↵ects to be studied for a longer period, perhaps for a smaller

subset of adoption events. Setting pre = post = 0 is the least restrictive because in that

case any event that happens at least one period after Tmin and one period before Tmax is

potentially valid.

The clean controls inclusion criteria we use here is based around the idea that a clean

control is one that is not exposed to treatment at any time during the  event window. But

it is straightforward to implement alternative definitions of clean controls. In some cases,

researchers may prefer to define clean controls as units that never adopt treatment at all, at

least up to the time of publication. In other cases, it might be more credible to define clean

controls as states that do adopt treatment at some future date but do not adopt during the 

window. This would exclude the never treated states and use only the not yet treated states

as clean controls. Another possibility is to allow both never treated and not-yet treated states

but require a more stringent criteria such that clean a controls must have As > a+post+pre.

This would ensure that the clean controls are not even in their own pre-period if they are

being used as clean controls for event a. There is no single correct set of inclusion criteria that

is good for all settings. These are study design choices and the definition of what constitutes

a clean control that is likely to meet the common trend and no-anticipation assumption may

vary from one study to the next. However, these alternative inclusion criteria do not change

the basic ideas of the stacked DID approach.
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4 Aggregation and Target Parameters

With the trimmed set of adoption events in hand, we have a collection of group-time ATT

parameters that are identified based on the observable data and the common trend and

no-anticipation assumptions. Specifically, in each event time period from e = �pre...post we

can identify ATT (a, a+ e) for each a 2 ⌦. In practice, it will often be convenient to combine

the collection of estimates into a summary average. One approach is to form a weighted

average of group-time ATTs for a specific event time, weighting each group-time ATT by its

share of the trimmed treatment group:

✓e =
X

a2⌦

ATT (a, a+ e)⇥ ND
a

ND
⌦

(2)

We call ✓e the trimmed aggregate ATT because it is an average of group-time ATTs

across the sub-experiments contained in the trimmed set. ND
a is the number of treated

units in sub-experiment a, and ND
⌦

=
P

a2⌦
ND

a is the total number of treated units in

the trimmed set. The weights are non-negative and sum to one across the sub-experiments,

which means that the aggregate parameter is a convex combination of underlying causal

e↵ects. The collection of groups included in the average and the weight assigned to each

component ATT parameter is fixed across event time periods, ensuring that the composition

of the aggregate is balanced over event time. This means that changes in the value of ✓e
across event time periods indexed by e reflect dynamic treatment e↵ects in the post-period

and evidence of di↵erential pre-trends in the pre-periods. To form a summary average across

the post-treatment event window, one could compute the simple average of the treatment

e↵ects across the post period event times: ✓post = 1
post

Ppost

h=1 ✓h.

Table 1 presents three other trimmed aggregate parameters that might be useful in some

applications. The first row shows the trimmed aggregate ATT discussed above. The second

row presents a population weighted ATT, which weights each of the group-time ATTs by

it’s share of the overall treated population. In a study organized around state⇥ year policy

changes, the population weighted ATT give more weight to sub-experiments that a↵ect a

larger group of people. The third row shows an aggregate in which each group-time ATT is

weighted by the share of the overall analytic sample involved in its estimation. This would

give more weight to group-time ATTs estimated using a larger sample size, which depends

on the size of the treatment group and the control group in that sub-experiment. The first

column of Table 1 simply shows the definition of each of these three aggregate parameters of

interest. We discuss how to estimate them using stacked weighted least squares regressions
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Table 1: Alternative weighting schemes

Estimand Treatment Weight Control Weight Notes

Trimmed
Aggregate
ATT

P
⌦

ATT (a, e)N
D
a

ND 1 ND
a /ND

NC
a /NC

ND
a is the number of groups

that first adopt treatment in

a. ND
is the total number of

groups that adopt treatment

at any of the times included

in the trimmed set. NC
a and

NC
give the analogous counts

for the control groups. These

ATT weights produce an aggre-

gate parameter in which each

group time ATT (a, e) in the

trimmed set is weighted by its

share of the treated sample.

Population
Weighted
ATT

P
⌦

ATT (a, e)PopDa
PopD

PopDa /PopD

ND
a /ND

PopDa /PopD

NC
a /NC

PopDa represents the total pop-

ulation of people in group a.
PopD is the total population

across all of the treated groups

included in the trimmed set.

These weights produce an ag-

gregate parameter in which

each group time ATT (a, e) in
the trimmed set is weighted by

its share of the treated popu-

lation.

Sample
Share
Weighted
ATT

P
⌦

ATT (a, e) (N
D
a +NC

a )
ND+NC

(ND
a +NC

a )/(ND+NC)
ND

a /ND
(ND

a +NC
a )/(ND+NC)
NC

a /NC

These weights produce an ag-

gregate parameter in which

each group time ATT (a, e) is
weighted by its overall share

of the stacked analytic sam-

ple. The sample share depends

on the number of both treated

and control units in each sub-

experiment.

later in the paper.

5 Stacked DID Estimation

All of the component elements of the trimmed aggregate ATT parameter – ✓e – are identified

by a staggered adoption design. In principle, one could use the strategy mapped out by

Callaway and Sant’Anna (2021) to estimate each of the group-time ATTs and then form the

aggregate manually. 5 However, in this section of the paper, we show that it is also possible

5
To compute the trimmed aggregate ATT using the manual approach, use the event window and clean

controls inclusion criteria to define the trimmed set of adoption groups. Compute the weights given in the

estimand column of Table 1; note that the weights here come from the estimand itself and not from the

corrective sample weights. Then separately estimate the DID contrasts for each adoption group in each event

time in the �window. Finally, multiply each of the group-time ATT estimates by the weight and then sum

up the weighted ATT estimates from each event time period. All of this is conceptually compatible with

the Callaway and Sant’Anna (2021) method. However, there is no automatic way to accomplish these steps
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to estimate the aggregate parameter in one step using a linear regression estimator applied

to a stack of sub-experimental data sets.

We start by explaining how to construct the analytic sample for each sub-experiment and

assemble them into a stacked data set. Then we analyze several regression specifications to

clarify the causal estimand of the stacked regressions under the standard DID assumptions.

We show that the most basic stacked regression specification is biased in the sense that its

coe�cients do not correspond to our target aggregate parameter (✓e) or to any other convex

combination of underlying causal e↵ect parameters. The bias in the basic stacked regression

arises because the regression implicitly weights treatment trends and control trends di↵erently.

This matters when the treatment share di↵ers across sub-experiments. Because the bias is a

function of relative sample sizes in the treatment and control groups, it is possible to correct

the bias using sample weights. We derive sample weights to correct the bias and propose a

weighted least squares stacked regression that is straightforward to implement. We show that

the coe�cients from the weighted stacked regressions recover the target aggregate parameter,

✓e. We study statistical inference for the weighted stacked event study estimator using a

small monte carlo analysis.

Most of this section is focused on unweighted and weighted stacked event study spec-

ifications that are fully saturated models of the conditional expectation function linking

outcomes across event time and treatment status. These models are di↵erent from some of

the specifications used in applications by Cengiz et al. (2019), Butters et al. (2022), and

Deshpande and Li (2019). Those studies use regressions that include unit by time and unit

by sub-experiment fixed e↵ects and that are not fully saturated specifications. The final part

of this section considers these stacked fixed e↵ect specifications and shows that they are also

biased by di↵erential weights.

5.1 Building the Stack

The first step in implementing the stacked DID estimator is to assemble a separate data

set for each sub-experiment in the trimmed set of adoption events. Start with a long-form

panel in which each row is a unit ⇥ calendar time observation. Let Da
s = 1(As = a) be

an indicator variable set to one if group s first adopts treatment in period a. Next, let

Ca
s = 1(As > a+ post) be a dummy variable set to one if group s is a valid clean control for

adoption event a. Finally, Ma
t = 1(a� pre � 1  t  a+ post) indicates that calendar time t

falls inside the �window for sub-experiment a.

using the packages and commands developed for the Callaway and Sant’Anna (2021) method in R and Stata.

To use these packages for our purposes, you would need to apply the inclusion criteria to trim the set of

identified parameters, manually compute the weights, and the form the aggregate.
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With these definitions in hand, Iast = Ma
t (D

a
s + Ca

s ) is a dummy variable set to one if

observation s from calendar period t belongs to the analytic sample for sub-experiment a.

The sub-experimental data set for sub-experiment a 2 ⌦ consists of all observations with

Iast = 1. Repeat this procedure for each a 2 ⌦ to construct each of the sub-experimental

data sets.

In sub-experiment a, there will be ND
a =

P
s D

a
s treatment group units and NC

a =
P

s C
a
s

control group units. In each sub-experiment, each unit will be observed for pre+post+1 time

periods. Ordering each sub-experiment by event time e = t� a and vertically concatenating

the sub-experimental data sets leads to a single “stacked” data set. In the stacked data

set, each observation refers to a unit ⇥ sub-experiment ⇥ event time (s, a, e) observation.

Notationally, this means we have changed the a�superscripts in the sub-experimental data

sets into a�subscripts in the stacked data set. Thus, we use Ysae to represent the observed

outcome for unit s in sub-experiment a in event time e. And we let Dsa be a dummy variable

set to one if unit s is a member of the treatment group in sub-experiment a and set to zero

if unit s is a member of the control group in sub-experiment a. Within a sub-experiment,

treatment status does not vary over event time.

Importantly, in the stacked data set the event time index runs from �pre...post in every

sub-experiment in the stack. The event times will correspond to di↵erent calendar times since

e = t� a, which means that the sub-experiments are not aligned in calendar time. There will

be ND
⌦

=
P

a2⌦
ND

a treatment group units in each event time period. Likewise, the stacked

dataset will have NC
⌦

=
P

a2⌦
NC

a control group units in each event time period. The total

number of control observations in the stacked data set can be quite large because the same

group⇥ time observation may appear in multiple sub-experiments.

5.2 Simple Stacked Regressions

Looking at the stacked data set described above, it is straightforward to define conventional

sub-experiment specific DID comparisons as DIDa=j,e = E[Ysa,e � Ysa,�1|Dsa = 1, a =

j] � E[Ysa,e � Ysa,�1|Dsa = 0, a = j]. There is one of these DID comparisons for each

sub-experiment, and they can be constructed for di↵erent event times to trace out an event

study. But the point of the stacked data set is to examine DID comparisons that pool

information across sub-experiments. From that point of view, the most basic stacked DID

comparison is DIDstack
e = E[Ysa,e � Ysa,�1|Dsa = 1]� E[Ysa,e � Ysa,�1|Dsa = 0]. Under the

common trends and no-anticipation assumption, we know that for each sub-experiment DID

DIDa=j,e = ATT (j, j + e). But what about the stacked DID comparison?

To work out the connection between the stacked DID and the underlying sub-experiment
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specific DIDs, we use the law of iterated expectations:

DIDstack
e = E

h
E[DIDe

a|a]
i

= E
h
E[Ysa,e � Ysa,�1|Dsa = 1, a]

i
� E

h
E[Ysa,e � Ysa,�1|Dsa = 0, a]

i

=
X

j2⌦

E[Ysa,e(j)� Ysa,�1(0)|Dsa = 1, a = j]
ND

j

ND

�
X

j2⌦

E[Ysa,e(0)� Ysa,�1(0)|Dsa = 0, a = j]
NC

j

NC

=
X

j2⌦

E[�s,j+e(j)|Dsa = 1, a = j]
ND

j

ND

+
X

j2⌦

E[�Y (0)
s |Dsa = 1, a = j]

ND
j

ND �
X

j2⌦

E[�Y (0)
s |Dsa = 0, a = j]

NC
j

NC

= ✓e +
X

j2⌦

E[�Y (0)
s |Dsa = 1, a = j]

ND
j

ND �
X

j2⌦

E[�Y (0)
s |Dsa = 0, a = j]

NC
j

NC

6= ✓e

The first equality describes the stacked DID as an iterated expectation over sub-experiment-

specific DIDs. The second equality decomposes the DID into the pre-post changes in the

treatment and control sub-populations, maintaining the iterated expectation for each. In

the third equality, we substitute potential outcomes for observed outcomes, impose the no-

anticipation assumption, and replace the outer expectations with a sum over sub-experiments.

In the treated arm of the study, the jth sub-experiment is weighted by
ND

j

ND , which is the share

of all of the treated observations in the stack that belong to sub-experiment j. Similarly,

in the control group arm, the jth sub-experiment is weighted by
NC

j

NC , which is the share of

all controls in the stack that appear in sub-experiment j. The fourth equality rewrites the

expression in terms of causal e↵ects and time trends in untreated outcomes, where we re-write

pre-post changes using �Y (0)
s = Ysa,e � Ysa,�1 as shorthand. The weighted sum in the first

term is the trimmed aggregate ATT, ✓e, a substitution we make in the fifth equality.

The inequality in the final line shows that the stacked DID does not identify the target

aggregate causal parameter or any other sensible causal aggregate. The problem is that

the time trends in untreated potential outcomes are averaged across sub-experiments using

di↵erent weights for treated observations and control observations in the stacked data set.
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These weights are implicit: they are simply the way that the stacked DID combines information

across the sub-experiments. But because of the di↵erent weights, the trends in untreated

outcomes do not necessarily cancel in the stacked DID even if the common trends assumption

holds within each sub-experiment.

5.3 Weighted Stacked Regressions

The simple stacked regression does not identify a causal e↵ect because it weights treatment

and control group trends di↵erently. To correct for the bias, we define the following sample

weight:

Qsa =

8
<

:
1 if Dsa = 1
ND

a /ND
⌦

NC
a /NC

⌦

if Dsa = 0

The weighted stacked DID using Qsa as a sample weight is:

DIDws,e = E
h
E[Ysa,eQsa � Ysa,�1Qsa|Dsa = 1, a]

i
� E

h
E[Ysa,eQsa � Ysa,�1Qsa|Dsa = 0, a]

i

=
X

j2⌦

E[�s,j+e(j)|Dsa = 1, a = j]
ND

j

ND
⌦

+
X

j2⌦

E[Ysa,e(0)� Ysa,�1(0)|Dsa = 1, a = j]
ND

j

ND
⌦

�
X

j2⌦

E[Ysa,e(0)� Ysa,�1(0)|Dsa = 0, a = j]⇥
ND

j /ND
⌦

NC
j /NC

⌦

⇥ NC
j

NC
⌦

= ✓e +
X

j2⌦

ND
j

ND
⌦

 
E[�Y (0)

sa |Dsa = 1, a = j]� E[�Y (0)
sa |Dsa = 0, a = j]

!

= ✓e

The first line shows the weighted stacked DID as an iterated expectation over the sub-

experiments, this time with the outcome variables multiplied by the Q-weights. Conditional

on Dsa = 1, the Q-weight is equal to 1 and so the weight vanishes in the treatment arm of the

DID. In contrast, conditional on Dsa = 0, the weight is equal to
ND

a /ND
⌦

NC
a /NC

⌦

in the control arm.

The second equality substitutes potential outcomes, imposes the no-anticipation assumption,

substitutes the known values of the Q-weights, and replaces the outer expectations with a

sum over the sub-experiments. The control group term simplifies because ND
a /ND

NC
a /NC ⇥ NC

j

NC =
ND

j

ND .

Using �e
sa(0) = Ysa,e(0)� Ysa,�1(0) to represent trends and re-arranging, the third equality

shows that the weighted stacked DID is equal to the target ATT aggregate plus the di↵erence
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in treatment and control group trends. Because of the Q-weights, the treatment group trends

and control group trends in each sub-experiment are now weighted equally. These trends

cancel under the common trends assumption so that the stacked DID identifies the target

parameter.

The identical point estimate could be obtained using weighted least squares regressions

fitted to the stacked data set. To see this, start with a simple case in which pre = post = 0.

That leads to a stacked data set in which each sub-experiment has two periods corresponding

to event times e = �1 and e = 0. In this case, the stacked DID regression specification would

would have the familiar form:

Ysae = �0 + �1Dsa + �21(e = 0) + �3Dsa ⇥ 1(e = 0) + Usae

Using weighted least squares with the Q-weights described above, �3 = ✓0. This is

the average of the group-time ATTs measured at the initial adoption year across all sub-

experiments where the initial adoption year is identified. In the more expansive event study

case, there is a longer event window and the classic DID regression does not su�ce. For a

feasible choice of pre and post the weighted event study regression specification is:

Ysae = ↵0 + ↵1Dsa +
X

h=�pre...post
h 6=�1

"
�e1[e = h] + �eDsa ⇥ 1[e = h]

#
+ Usae (3)

When the model is estimated using weighted least squares with the Q-weights, �e = ✓e.
6

For pre > 0, the specification includes estimated e↵ects in the pre-treatment time periods.

When the no anticipation and common trend assumptions hold in each sub-experiment, these

pre-treatment pseudo ATT e↵ects will equal zero. Similarly, for post > 0 the event study

traces out the aggregated ATTs over the post treatment event times for a balanced set of

adoption groups. Changes in �e = ✓e over post-treatment periods e = 0, 1, ...,post measure

time varying treatment e↵ects without concerns about changes in composition.

The full event study regression is a convenient way to measure evidence of di↵erential

6
The coe�cients in the expression are defined as the solution to

argmin
↵0,↵1,�e,�e

X

sae

Qsa

0

BB@Ysae � ↵0 � ↵1Dsa �
X

h=�pre...post

h 6=�1

"
�e1[e = h] + �eDsa ⇥ 1[e = h]

#
1

CCA

2

.
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trends in the pre period and to estimate time varying treatment e↵ects over the post-period.

However, in applied work, it may also be appealing to estimate a single summary measure

the average e↵ect over the post-treatment time periods. For example, it might be helpful

to estimate a quantity like ✓post = 1
post

Ppost

h=1 ✓h. A point estimate of ✓post is the simple

average of the post-period event study coe�cients: �post = 1
post

Ppost

e=0 �e. In practice, it is

easy to estimate standard errors for the aggregate can be computed using standard methods

for a linear combination of coe�cients.7 Alternatively, the average post-period e↵ect can be

estimated directly using a regression model with a di↵erent parameterization:

Ysae = ↵0 + ↵1Dsa + ↵31[e � 0] + �postDsa1[e � 0]

+
X

h=�pre
�2

"
�e1[e = h] + �eDsa ⇥ 1[e = h]

#
+ Usae

In this model, event time indicators and the interaction with treatment group membership

are included for each pre-treatment time period. But the post-period event time indicators

are replaced with a single indicator set to 1 for all post-treatment periods. The coe�cient

on the interaction between treatment status and the post variable is exactly equal to the

simple average of the underlying event study coe�cients from the event study specification.

Estimating the model this way using the trimmed sample and the corrective weights provides

a direct estimate of the post period average e↵ect and its standard error. The linear

combination approach and the re-parameterized regression approach will both produce the

same point estimate and standard errors. But note that these methods are slightly di↵erent

from estimating a summary parameter by using just treatsa, postae, and treatsa ⇥ postae as

regressors. Grouping the multiple pre- and post-periods into blocks to form the average e↵ect

will produce a di↵erent point estimate of the post-period average e↵ect because it uses the

full pre-period average as the baseline outcome rather than only the period just prior to

treatment.

The weighting procedure described in this section can be modified so that the stacked

regression coe�cients identify some alternative aggregate parameters of interest. Table 1

shows the definition of Q� weights required to uncover the population weighted ATT and the

sample share weighted ATT. All of the information required to implement the sample share

weights is contained in the stacked data set itself. However, to implement the population

weighted ATT, researchers will need to assemble information about the population size in

7
For example, one can use the marginale↵ects package in R, or the lincom command in stata.
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each of the units in the study sample.

Estimating these weighted stacked event study regressions is as easy as fitting event study

regressions in the two group event study case. The main tasks from a programming point of

view involve building the sub-experimental data sets, stacking them up, and computing the

Q-weights using information on sample sizes by sub-experiment and treatment status.

5.4 Statistical Inference

In conventional approaches to staggered adoption designs and other settings where treatment

varies at the group level, the data are usually treated as independent across groups and

dependent within groups. It is important to allow for this dependence – i.e. clustering at

the group level – when estimating standard errors (Bertrand et al., 2004). In the stacked

design, the same observations may appear in multiple sub-experimental data sets because

clean controls may be used in several sub-experiments. For instance, there may be some

never treated groups that qualify as clean controls for every sub-experiment. In addition,

it is possible for some units to appear as a clean control in some sub-experiments and as a

treated unit in other sub-experiments. This could happen, for example, if a group is a very

late adopter and the  window is relatively short. These issues do not pose an identification

problem. However, duplicate clean control observations across sub-experiments, and repeated

use of the same groups across sub-experiments may create additional dependence across

sub-experiments.

One way to conduct inference is to make the standard clustering assumption: assume that

all observations from the same unit may be dependent, even if they appear in di↵erent sub-

experiments. An alternative approach is to allow for clustering at the group⇥sub�experiment

level. This approach allows for dependence among observations within the same group and

sub-experiment but treats the observations on the same group in di↵erent sub-experiments

as independent. In applied work, Cengiz et al. (2019) estimate standard errors allowing for

clustering at the group⇥ sub� experiment level, and Deshpande and Li (2019) and Butters

et al. (2022) cluster at the group level.

We conducted a small Monte Carlo study to examine the performance of these two cluster

robust variance matrices for performing statistical inference in a stacked event study. Our

simulation is built around data from the Medicare Geographic Variation (MGV) Public Use

File, which provides information on Fee for Service Medicare Expenditures per capita at

the county level. We limit the sample to a balanced panel of 2, 724 counties that are each

observed for the 15 years from 2007 to 2021. We treat these data as a sampling frame for our

simulations.
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Table 2: Statistical inference in stacked DID – Monte Carlo simulation results

Event
Time

Number of
Clusters

True
✓(e)

Average
✓̂

SD
✓̂

Average
\secounty

Average
\secounty�sub

Rejection
\secounty

Rejection
\secounty�sub

0 50 112 116.14 148.62 138.28 137.77 0.07 0.07
0 100 112 115.81 104.94 101.58 101.47 0.05 0.05
0 500 112 111.65 47.75 47.22 47.26 0.05 0.06
0 1000 112 112.74 33.03 33.50 33.55 0.05 0.05
0 1500 112 112.49 26.97 27.41 27.45 0.05 0.04
0 2000 112 111.35 23.37 23.72 23.75 0.05 0.05
0 2500 112 112.25 20.53 21.24 21.27 0.04 0.04
1 50 132 137.24 178.66 164.33 165.86 0.08 0.07
1 100 132 134.36 122.32 120.28 121.55 0.06 0.06
1 500 132 133.03 55.41 55.74 56.37 0.05 0.04
1 1000 132 133.20 39.33 39.58 40.04 0.05 0.05
1 1500 132 132.20 32.34 32.42 32.79 0.05 0.05
1 2000 132 131.51 27.85 28.08 28.41 0.05 0.05
1 2500 132 132.14 25.06 25.14 25.43 0.05 0.05
2 50 152 156.67 205.69 194.28 191.79 0.06 0.07
2 100 152 153.50 139.68 140.59 139.25 0.06 0.06
2 500 152 152.98 63.12 65.10 64.68 0.04 0.04
2 1000 152 153.53 44.71 46.16 45.88 0.04 0.04
2 1500 152 151.62 37.18 37.75 37.52 0.05 0.05
2 2000 152 151.61 31.82 32.73 32.54 0.04 0.05
2 2500 152 152.15 28.52 29.28 29.11 0.04 0.04

In each run of the Monte Carlo simulation, we draw a random sample of G counties with

replacement from the MGV file. Then we assign the selected county-year observations to

treatment and control status using a simple staggered adoption design. In our design, 18% of

the G counties are randomly assigned to be ever treated. Then these .18⇥G = ND counties

are randomly apportioned to three timing groups: 5/9 ⇥ ND are exposed to treatment in

calendar year 2011, 3/9⇥ND are exposed in 2013, and 1/9⇥ND are exposed in 2015. We

set the untreated potential outcome in each county-year cell equal to the observed Medicare

Expenditures per capita in that cell. The treated potential outcome is the sum of the

untreated outcome and the time varying treatment e↵ect for each treatment adoption group.

In our design, the treatment e↵ect function is $107 + $20 ⇥ Years Since Adoption for the

2011 adoption group, $119 + $20⇥ Years Since Adoption for the 2013 adoption group, and

$116 + $20⇥ Years Since Adoption for the 2015 adoption group. We consider a design with

pre = 2 and post = 2, so that we estimate the trimmed aggregate ATT at e = 0, 1, 2. Given

the size of these three adoption group, this means that the target aggregate parameters of

interest in the DGP are ✓0 = $112, ✓1 = $132, and ✓2 = $152.
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In the simulation, a cluster is a 15 period vector of Medicare expenditure for a selected

county so that the sampling process preserves the actual dependency between observations

within a county. The level of the outcome and changes over time within a county are also

realistic because they come from whatever happened to Medicare spending in the selected

county. Because treatment timing is randomly assigned, the common trend assumption holds

in the DGP.

With a random sample of counties in hand, we form the sub-experiments, stack the

data, and fit the weighted stacked event study regression. We estimate two sets of cluster

robust standard errors for the coe�cients: standard errors that allow for dependence at the

pseudo-county level, and standard errors that allow for dependence as the pseudo-county ⇥
sub-experiment level. Then we compute the cluster robust t-statistic for tests of the null

hypothesis that each post period treatment e↵ect is equal to its known true value. If the

clustered standard errors are a good approximation to the sampling error, then a two-tailed

test with ↵ = .05 should reject the null (wrongly) in 5% of simulations.

We conducted 5000 simulations with G 2 [50, 100, 500, 1000, 2000, 2500] clusters. Table 2

reports the results from the simulation. The first panel shows estimates of the immediate

e↵ect at period e = 0. The second and third panels show results for event times e = 1 and

e = 2. Within a panel, each row in the table shows results from 5000 simulations with a fixed

number of clusters.

The fourth column reports the average coe�cient estimate across the 5000 simulations. As

expected, the average simulation is a close match to the theoretical parameter, especially as

the number of clusters gets large. The fifth column shows the empirical standard deviation of

the point estimates across the 5000 simulations, and the sixth and seventh columns contains

the average estimated standard error, clustering at the county level and the county x sub-

experiment level. Both sets of standard errors correspond closely to the observed standard

deviation, particularly when the number of clusters is 100 or more. The final columns show

the rejection rates for the t-test against the true null. Both tests perform quite well with a

large number of clusters: with 2500 clusters, the rejection rates are between .04 and .05 for

all three treatment e↵ect parameters. Performance is slightly worse with 50 clusters, where

the rejection rates are between .06 and .08 across the three parameters. We expected worse

performance when standard errors are clustered at the county ⇥ sub-experiment level because

this approach does not account for repeated observations across sub-experiments. But in

practice — at least in this example — the two methods produced nearly identical results.

Overall, the Monte Carlo simulations suggest that the weighted stacked event study does

not pose any new challenges from a statistical inference point of view. Standard errors that

allow for clustering at the level of the treatment work well when the number of clusters is not
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too small. In applications, the standard alternatives (i.e. wild bootstrap, block bootstrap,

and degree of freedom adjustments) could be appropriate for the usual reasons.

5.5 Alternative Stacked Regression Specifications – Fixed E↵ects

The stacked event study regressions we proposed above are di↵erent from the regression

specifications used in applied work by Cengiz et al. (2019), Deshpande and Li (2019), and

Butters et al. (2022). The regressions used in these papers include state ⇥ sub-experiment

and sub-experiment ⇥ event time fixed e↵ects. Using our notation, these stacked fixed e↵ect

regression specifications look like:

Ysae =
X

h=�pre...post
h 6=�1

"
�fee (Dsa ⇥ 1[e = h])

#
+msa + vae + Usae (4)

The stacked fixed e↵ect specification looks more complicated than the event study specifi-

cation in our main analysis because it incorporates potentially high dimensional fixed e↵ects.

But the complexity is not necessarily desirable. The event study model in equation 3 is a sat-

urated specification for the conditional expectation function linking realized outcomes across

cells defined by treatment status and event time, E[Ysae|Dsa, e]. Because the specification

contains a parameter for every value of the conditioning variables, the event study specification

does not impose any parametric structure on the shape of the conditional expectation function

in observed outcomes. The common trend and no anticipation assumptions are imposed on

the potential outcomes, which gives a causal interpretation to the coe�cients in the event

study specification.

In contrast, the fixed e↵ect specification is a model of the conditional expectation func-

tion linking observed outcomes across states, sub-experiments, and event time periods –

E[Ysae|s, a, e]. But the regression is not fully saturated in state, sub-experiments, and event

times. That means that the specification imposes more parametric structure on the observed

outcome function in addition to the common trends and no anticipation assumptions. Thus,

estimates based on the fixed e↵ect structure are more dependent on modeling assumptions

than the saturated event study specification.

One way to build intuition for stacked fixed e↵ects regressions is to consider the saturated

event study regression fitted separately to each sub-experiment.
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Y a
se = ↵a

0 + ↵a
1D

a
s +

X

h=�pre...post
h 6=�1

"
�a
e1[e = h] + �ae (D

a
s ⇥ 1[e = h])

#
+ ✏sae

=
X

h=�pre...post
h 6=�1

"
�aeD

a
s ⇥ 1[e = h]

#
+msa + vae + Usae

The second line re-parameterizes the two group event study regression from equation 1,

replacing the event time main e↵ects with fixed e↵ects. When fitted to data from a single

sub-experiment, each �ae = ATT (a, a + e) under the common trends and no-anticipation

assumptions. These sub-experiment specific models could be fit in a single pass through the

stacked data set by fully interacting all of the variables with sub-experiment identifiers:

Ysae =
X

j2⌦pre,post

X

h=�pre...post
h 6=�1

"
�ed(Dsa ⇥ 1[e = h]⇥ 1[a = j])

#
+msa + vae + Usae

The fully interacted model reproduces the parameters from the sub-experiment specific

regressions, but it does not aggregate the e↵ects into a summary measure. The stacked fixed

e↵ect specification in equation 4 produces an aggregate e↵ect by suppressing the three way

interaction terms. However, it is not clear how the coe�cients from equation 4 relate to

underlying causal e↵ects, or to our target aggregate parameter, ✓e.

To investigate the structure of the stacked fixed e↵ect regression coe�cient, focus on the

simple case of a stacked data set with two periods corresponding to event times e = �1 and

e = 0. In this case, there is no event study and only a single coe�cient of interest:

Ysae = �fe0 Dsae +msa + vae + Usae

Using the Frisch-Waugh-Lowell theorem, �fe0 = Cov(Ysae, gDsae)

V ar( gDsae)
, where gDsae = Dsae�Dsa�Dea+

Da. Limiting the sample to a single sub-experiment and applying the same logic implies that

the sub-experiment specific causal e↵ect is ATT (a, 0) = �ae = Cova(Ysae, gDsae)

V ara( gDsae)
. Let Na

N = ND
a +NC

a
ND+NC

represent the share of stacked observations that belong to sub-experiment a. Using the law

of total covariance and variance, we can write the stacked fixed e↵ect parameter as the sum
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of two components.8

�fe0 =

P
a ATT (a, 0)⇥ V ara(gDsae)

Na
NP

a V ara(gDsae)
Na
N +

P
a(E[gDsae|a]� E[gDsae])2

Na
N

+

P
a(E[Ysae|a]� E[Ysae])(E[gDsae|a]� E[gDsae])

Na
NP

a V ara(gDsae)
Na
N +

P
a(E[gDsae|a]� E[gDsae])2

Na
N

The first component is a weighted sum of causal e↵ects from each sub-experiment. The second

component depends on the covariance between the outcomes and treatment exposure levels

across sub-experiments. Although it is not particularly intuitive, this decomposition shows

that, in general, the stacked fixed e↵ect coe�cient does not represent a coherent aggregation

of underlying causal e↵ects. The first term is a non-convex combination of e↵ects, rather

than a proper average of ATTs. And the second term potentially incorporates non-causal

associations across sub-experiments.

The fixed e↵ect expression simplifies in the special case where the share of treated units is

constant across sub-experiments. Then E[gDsae|a] = E[gDsae] for all sub-experiments, making

second term drop out because the cross-experiment covariance equals zero. The first term

simplifies as well because the second term in its denominator drops out, leaving a simpler

form for the fixed e↵ect coe�cient:
8
The law of total covariance implies that

Cov(Ysae, ]Dsae) = E[Cov(Ysae, ]Dsae|a)] + Cov(E[Ysae|a], E[]Dsae|a])

=

X

a

ATT (a, 0)⇥ V ara(]Dsae)
Na

N

+

X

a

(E[Ysae|a]� E[Ysae])(E[]Dsae|a]� E[]Dsae])
Na

N

Similarly, the law of total variance implies that:

V ar(]Dsae) = E[V ar(]Dsae|a)] + V ar(E[]Dsae|a])

=

X

a

V ara(]Dsae)
Na

N
+

X

a

(E[]Dsae|a]� E[]Dsae])
2Na

N
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�fe0 =

P
a ATT (a, 0)⇥ V ara(gDsae)Pr(a)

P
a V ara(gDsae)Pr(a)

This shows that in the constant treatment share case, the stacked fixed e↵ect coe�cient

corresponds to a convex combination of sub-experiment specific group-time ATTs. Each

group-time ATT receives a weight proportional to its sub-experiment’s share of the total

(within) variance in the treatment variable. However, since the within variance in treatment

will be equal in each sub-experiment under the constant treatment shares case, the weights

are really driven by the sample sizes in each sub-experiment. If sub-experiment total sample

sizes also are equal then the stacked design gives equal weight to each sub-experiment.

6 Application

We illustrate the method by examining the e↵ects of the ACA Medicaid expansion on health

insurance coverage among adults ages 19 to 60. We use data from the 2011 to 2021 waves of

the American Community Survey, obtained from IPUMS. The outcome variable is a dummy

variable indicating that the person reports that they were not covered by any health insurance

plan during the year. Using sampling weights, we collapse the microdata into state ⇥ calendar

year uninsurance rates.

As of 2021, a total of 40 states had adopted the ACA Medicaid expansions. 28 states

adopted in 2014, 3 states adopted in 2015, 2 states adopted in 2016, 2 states adopted in 2019,

3 states adopted in 2020, and 2 states adopted in 2021. These adoption events represent

potential sub-experiments to be examined in the staggered adoption design.

We set pre = 3 and post = 2 to define a uniform event window for each sub-experiment.

Table 3 has a row for each sub-experiment and shows the treated states, clean controls, and

calendar years included in each sub-experiment. The 2020 and 2021 adoption events are

trimmed from the analytic sample because they occur so recently that there is not enough

follow up data to maintain the  window. For each of the feasible adoption events, we form a

sub-experimental data set consisting of data on the treated states and any states that are

either never treated or are not treated for at least post years after the focal adoption event.

We limit these data to the relevant calendar years so that each of the 4 sub-experimental data

sets consists of 6 event time observations for each treated and control state. Concatenating

the feasible sub-experimental data sets yields a stacked dataset with 600 observations in total.

Table 3 show the fraction of treated units and of all units in the stacked sample that fall into

each sub-experiment.

26



Table 3: Sub-Experiments in the ACA Expansion Staggered Adoption Design

Sub-Experiment Starting Year Ending Year Stack Share Treated Share Treated States Control States

2014 2011 2016 0.46 0.80 AZ, AR, CA, CO,
CT, DE, DC, HI,
IL, IA, KY, MD,
MA, MI, MN, NV,
NH, NJ, NM, NY,
ND, OH, OR, RI,
VT, WA, WV, WI

AL, FL, GA, ID,
KS, ME, MS, MO,
NE, NC, OK, SC,
SD, TN, TX, UT,
VA, WY

2015 2012 2017 0.21 0.09 AK, IN, PA AL, FL, GA, ID,
KS, ME, MS, MO,
NE, NC, OK, SC,
SD, TN, TX, UT,
VA, WY

2016 2013 2018 0.20 0.06 LA, MT AL, FL, GA, ID,
KS, ME, MS, MO,
NE, NC, OK, SC,
SD, TN, TX, UT,
VA, WY

2019 2016 2021 0.13 0.06 ME, VA AL, FL, GA, KS,
MS, NC, SC, SD,
TN, TX, WY

2020 Trimmed Trimmed – – ID, NE, UT –

2021 Trimmed Trimmed – – MO, OK –

Table 4 shows estimated coe�cients from simple two-group event study regressions fitted

to each sub-experiment separately. Standard errors that allow for clustering at the state

level are shown in parentheses. The first column of Panel B shows results from the 2014

sub-experiment, in which 28 of the 35 treated states first adopted the ACA. The event study

coe�cients are small and not statistically significant during the pre-treatment period, but

they are larger and statistically significantly negative during the post-treatment periods. The

estimates imply that adopting the ACA reduced uninsurance rates by about 1.7 percentage

points in the initial year and by about 2.4 percentage points 1 year and 2 years after

adoption. Columns 2-4 show e↵ects for the 2015, 2016, and 2019 sub-experiments. The

results suggest the ACA reduced uninsurance rates by 2 to 5 percentage points after 2 years

in each sub-experiment. The pre-treatment coe�cients mostly support the common trend

and no-anticipation assumptions, although there a few exceptions in 2016 and 2019. Panel

A shows the average of the post-treatment event study coe�cients for each group. The

average post-period e↵ect suggests that the over the first three years after adoption, the ACA

Medicaid expansion reduced uninsurance by about 2.2 percentage points in the 2014 adoption

group, 1.6 percentage points in the 2015 adoption group, 4.3 percentage points in the 2016

adoption group, and 1.5 percentage point in the 2019 adoption group.

The title row of the table reports the share of treated observations that belong to each of

the four sub-experiments. For example, 28 of the 35 treated states in the trimmed sample
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Table 4: Sub Experiment Specific Event Studies

2014 2015 2016 2019 Weighted
28/35 3/35 2/35 2/35 Stacked
Treated Treated Treated Treated

(1) (2) (3) (4) (5)

A. Post-Treatment Average E↵ect

Treated (=1)⇥Post (=1) −2.16⇤⇤⇤ −1.59⇤⇤⇤ −4.21⇤⇤⇤ −1.52⇤⇤⇤ −2.19⇤⇤⇤

(0.645) (0.512) (0.407) (0.383) (0.561)

B. Event-studies

Treated (=1) −4.68⇤⇤⇤ −1.61 1.56 −5.66⇤⇤⇤ −4.12⇤⇤⇤

(1.59) (2.54) (1.46) (1.19) (1.34)
Event-time, -3 (=1) 0.749⇤⇤⇤ 3.30⇤⇤⇤ 5.17⇤⇤⇤ −0.877⇤⇤⇤ 1.13⇤⇤⇤

(0.242) (0.259) (0.418) (0.177) (0.203)
Event-time, -2 (=1) 0.423 2.87⇤⇤⇤ 2.30⇤⇤⇤ −0.240 0.703⇤⇤⇤

(0.270) (0.235) (0.336) (0.251) (0.222)
Event-time, 0 (=1) −2.87⇤⇤⇤ −2.30⇤⇤⇤ −1.04⇤⇤⇤ 0.333 −2.54⇤⇤⇤

(0.226) (0.335) (0.284) (0.238) (0.184)
Event-time, +1 (=1) −5.17⇤⇤⇤ −3.34⇤⇤⇤ −0.576⇤ −0.150 −4.47⇤⇤⇤

(0.400) (0.347) (0.292) (0.274) (0.336)
Event-time, +2 (=1) −6.22⇤⇤⇤ −2.88⇤⇤⇤ −0.493⇤⇤ −0.503⇤ −5.28⇤⇤⇤

(0.465) (0.311) (0.215) (0.254) (0.384)
Treated (=1)⇥Event-time, -3 (=1) −0.272 −0.366 1.55⇤⇤⇤ 1.01⇤⇤⇤ −0.102

(0.313) (0.567) (0.525) (0.185) (0.368)
Treated (=1)⇥Event-time, -2 (=1) −0.390 −0.855⇤⇤ 0.868⇤⇤ 0.564⇤⇤ −0.303

(0.316) (0.373) (0.354) (0.251) (0.299)
Treated (=1)⇥Event-time, 0 (=1) −1.68⇤⇤⇤ −1.20⇤⇤⇤ −2.53⇤⇤⇤ −0.657 −1.63⇤⇤⇤

(0.450) (0.366) (0.648) (0.609) (0.393)
Treated (=1)⇥Event-time, +1 (=1) −2.41⇤⇤⇤ −1.46⇤ −4.63⇤⇤⇤ −1.23 −2.39⇤⇤⇤

(0.737) (0.747) (0.801) (0.697) (0.645)
Treated (=1)⇥Event-time, +2 (=1) −2.38⇤⇤⇤ −2.09⇤⇤⇤ −5.48⇤⇤⇤ −2.68⇤⇤⇤ −2.55⇤⇤⇤

(0.831) (0.584) (0.855) (0.332) (0.707)

Observations 276 126 120 78 600

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. The uninsurance rate is multipled by 100.

adopted the ACA in 2014, 3 of 35 adopted in 2015, and so on. To manually compute trimmed

ATT aggregate, multiply each of the sub-experiment specific coe�cients by the treatment

share and then sum them up. The final column shows the point estimates from the weighted

stacked event study regression, which pools observations from each of the four sub-experiments.

These coe�cients give the same answer as manually computing the weighted sum. Column 5

of Panel A shows that the average post-period trimmed aggregate ATT of the ACA expansion

on uninsurance rates was about -2.2 percentage points.

Table 5 (Panel B) shows estimated coe�cients from several di↵erent stacked regression

specifications. Panel A shows the post-treatment average of the event study coe�cients. In

each regression, standard errors are shown in parenthesis and are estimated using a cluster

robust variance matrix that allows for dependence at the state level. The first column shows

point estimates from the stacked unweighted regression. The unweighted specification is quite

misleading. It implies statistically significant negative pre-trends, which were not evident
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Table 5: Stacked Event Study Regressions

Stacked ES Stacked ES Stacked FE Stacked FE
Weights Weights

(1) (2) (3) (4)

A. Post-Treatment Average E↵ect

Treated (=1)⇥Post (=1) −3.97⇤⇤⇤ −2.19⇤⇤⇤ −2.22⇤⇤⇤ −2.19⇤⇤⇤

(0.537) (0.561) (0.475) (0.540)

B. Event-studies

Treated (=1) −1.95 −4.12⇤⇤⇤

(1.26) (1.34)
Event-time, -3 (=1) 2.40⇤⇤⇤ 1.13⇤⇤⇤

(0.188) (0.203)
Event-time, -2 (=1) 1.51⇤⇤⇤ 0.703⇤⇤⇤

(0.157) (0.222)
Event-time, 0 (=1) −1.67⇤⇤⇤ −2.54⇤⇤⇤

(0.140) (0.184)
Event-time, +1 (=1) −2.54⇤⇤⇤ −4.47⇤⇤⇤

(0.224) (0.336)
Event-time, +2 (=1) −2.74⇤⇤⇤ −5.28⇤⇤⇤

(0.239) (0.384)
Treated (=1)⇥Event-time, -3 (=1) −1.38⇤⇤⇤ −0.102 0.035 −0.102

(0.365) (0.368) (0.291) (0.282)
Treated (=1)⇥Event-time, -2 (=1) −1.11⇤⇤⇤ −0.303 −0.232 −0.303

(0.255) (0.299) (0.258) (0.271)
Treated (=1)⇥Event-time, 0 (=1) −2.50⇤⇤⇤ −1.63⇤⇤⇤ −1.59⇤⇤⇤ −1.63⇤⇤⇤

(0.381) (0.393) (0.324) (0.371)
Treated (=1)⇥Event-time, +1 (=1) −4.31⇤⇤⇤ −2.39⇤⇤⇤ −2.38⇤⇤⇤ −2.39⇤⇤⇤

(0.607) (0.645) (0.549) (0.614)
Treated (=1)⇥Event-time, +2 (=1) −5.09⇤⇤⇤ −2.55⇤⇤⇤ −2.69⇤⇤⇤ −2.55⇤⇤⇤

(0.657) (0.707) (0.616) (0.693)

Observations 600 600 600 600

Sub-experiment-State FEs No No Yes Yes
Sub-experiment-Event-time FEs No No Yes Yes
Stack weights No Yes No Yes

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. The uninsurance rate is multiplied by 100.

in the underlying sub-experiment specific event studies. This occurs because the regression

implicitly weights treated and control group time trends di↵erently when forming the average

e↵ects. The second column shows the same saturated event study specification but this time

the model is estimated using weighted least squares and the corrective sample weights. The

pre-trends are not apparent in the weighted specification and the event study coe�cients are

the correct weighted average across sub-experiments.

Columns 3 and 4 of Table 5 show estimates from unweighted and weighted stacked event

study specifications that include state ⇥ sub-experiment and event time ⇥ sub-experiment

fixed e↵ects. The weighted stacked fixed e↵ect specification produces the same treatment

e↵ect estimates as the simpler weighted event study without fixed e↵ects. Interestingly, the

coe�cients from the unweighted stacked fixed e↵ect model (Column 3) are only slightly

di↵erent from the weighted stacked fixed e↵ect specification (Column 4), implying that
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– in this example – the stacked fixed e↵ect specification does not su↵er from substantial

bias. Of course, the analysis in section 5.5 shows that the two estimators (fixed e↵ects vs

weighted event study) are not equivalent in general. See Appendix A for results from a

simulated example in which the bias in the unweighted stacked fixed e↵ect specification is

more prominent.

7 Discussion

This paper shows how to use a stacked regression to analyze data from a staggered adoption

DID design. Stacked estimators are appealing because they provide a one-step, regression-

based method of pooling information from multiple (sub-experimental) di↵erence-in-di↵erence

designs in a way that nevertheless results in a well-defined and logical average causal e↵ect.

We make three main contributions. First, we show how to apply a trimming rule to staggered

adoption designs to ensure that the aggregate average does not su↵er from compositional

bias, which can be an important problem in event studies. Second, we show that the simple

saturated stacked regression estimators do not identify a causal parameter and are biased

because of di↵erential (implicit) weighting. This negative identification result also applies to

non-saturated stacked fixed e↵ect regressions in the general case. Third, we derive sample

weights that correct for the di↵erential weighting bias and show that a simple weighted least

squares estimator identifies a well-defined causal e↵ect that we call the “trimmed aggregate

ATT”. We think that the trimmed aggregate ATT is a sensible target parameter in many

applied settings. However, we also show how to create corrective sample weights to identify

other sensible aggregations, such as the trimmed per capita (population) ATT and the

trimmed sample share weighted ATT. The corrective weights are a function of sample sizes

by sub-experiment and they are easy to compute using the data. The weighted stacked DID

and Event Study estimators are intuitive and emphasize the key sources of variation in the

study, making it clear how each treatment exposure event contributes to the analysis.
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A Simulated Infant Mortality Rates–Staggered Adoption
Design

We constructed another example of a staggered adoption design using CDC Wonder data on
infant mortality rates in the 50 states from 1978 to 2020. We created 4 simulated adoption
groups. The earliest group is Mississippi in 1985. Then Alabama, Alaska, and Arizona
adopt in 1987. A collection of 14 states adopt in 2000: Oregon, Pennsylvania, Rhode Island,
South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, Virginia, Washington, West
Virginia, Wisconsin, Wyoming. And finally, Massachusetts adopts in 2011. The remaining
states are never treated.

In each adoption group, we generate treated outcomes by adding a constant and time
invariant treatment e↵ect to the observed infant mortality rate. Specifically, we set the
treatment e↵ect to be �12 deaths per 1000 births in the 1985 adoption group, +12 deaths
per 1000 births in the 1987 group, �8 deaths per 1000 births in the 2000 group, and +12
deaths per 1000 births in the 2011 adoption group.

Setting the balanced event window to cover a period from 6 periods before treatment to
10 periods after treatment, we form a trimmed set of sub-experiments for 1985, 1987, and
2000. The 2011 adoption group is trimmed (excluded) because it occurs too recently to be
studied for a full 10 year follow up. We formed the trimmed and balanced stacked data set
and construct the corrective weights using the procedures described in the paper. With the
stacked data in hand, we fit event study regression models with and without weights and
with and without state ⇥ event time and state ⇥ sub-experiment fixed e↵ects.

The true ATT within this balanced sample is a constant �4.9 in each event time period.
However, because we are using a real data set rather than a full simulation, it is possible that
the common trends assumption does not hold perfectly in this example: thus, the regression
estimates will not necessarily perfectly recover the true treatment e↵ect. The estimates are
in Table A1. The weighted stacked event study and weighted stacked fixed e↵ect estimates
are identical – as expected – and they are in fact very close to the the true e↵ect in most of
the post-treatment time periods. The average e↵ect across all post-treatment time periods is
estimated to be about -4.7. However, unlike the ACA example presented in the paper, in this
example the stacked event study coe�cients are di↵erent in the weighted and unweighted
fixed e↵ect models. We emphasize this point to make it clear that the close correspondence
between the fixed e↵ect and weighted fixed e↵ect estimates in the ACA example is simply
something that happenend in that example and is not a generalizable result.

The clean controls inclusion criteria we focused on in the paper is based around the idea
that a clean control is not exposed to treatment at any time during the  event window.
That is, units with treatment adoption dates As > a+ post were eligible clean controls for
sub-experiment a. In practice, this group may consist of a mixture of “never treated” and “not
yet treated” units. But our overall approach to stacked DID analysis is compatible with some
alternative clean control restrictions that may be useful in applied work. One alternative is
to use a stricter rule that defines clean controls as units that are not exposed to treatment
long enough after the  window that they are not themselves in their own pre-treatment
period. Formally, this strict rule includes as clean controls any units with s > a+ post + pre.
A third approach is to use only units that are “never treated” as clean controls.
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Table A2 illustrates how these di↵erent clean control definitions one matter when analyzing
the CDC Wonder example. Column (1) shows results based on the standard sample inclusion
criteria we have used throughout the paper. Column (2) presents results from the strict clean
controls inclusion criteria (s > a+ post + pre), where we omit any not yet treated group who
has pre-period data that falls within our pre bound. Column (3) shows results where only
never treated units are used as clean controls. Panel A of Table A2 shows estimates with our
corrective weights, while Panel B shows estimates from analogous regressions without the
corrective weights.The results make it clear that the corrective weights matter regardless of
the specific inclusion criteria used.
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Table A1: Stacked event study regressions, using infant mortality data and an imposed e↵ect

Stacked ES Stacked ES Stacked FE Stacked FE
Weights Weights

(1) (2) (3) (4)

Real e↵ect −4.9 −4.9 −4.9 −4.9

A. Post-Treatment Average E↵ect

Treated (=1)⇥Post (=1) −4.1⇤⇤ −4.7⇤⇤⇤ −4.0⇤ −4.7⇤⇤⇤

(1.7) (1.7) (2.0) (1.6)

B. Event-studies

Treated ⇥ Event-time, -6 −0.68⇤⇤ −0.03 −0.007 −0.03
(0.31) (0.29) (0.26) (0.25)

Treated ⇥ Event-time, -5 −0.48⇤⇤ 0.20 0.17 0.20
(0.21) (0.21) (0.20) (0.19)

Treated ⇥ Event-time, -4 −0.57⇤ −0.03 −0.03 −0.03
(0.30) (0.31) (0.28) (0.30)

Treated ⇥ Event-time, -3 −0.14 0.30 0.28 0.30
(0.19) (0.23) (0.21) (0.23)

Treated ⇥ Event-time, -2 0.03 0.21 0.19 0.21
(0.16) (0.21) (0.21) (0.22)

Treated ⇥ Event-time, 0 −5.0⇤⇤⇤ −5.1⇤⇤⇤ −4.4⇤⇤ −5.1⇤⇤⇤

(1.8) (1.8) (2.1) (1.6)
Treated ⇥ Event-time, 1 −4.8⇤⇤ −4.7⇤⇤ −4.0⇤ −4.7⇤⇤⇤

(1.9) (1.9) (2.1) (1.7)
Treated ⇥ Event-time, 2 −4.4⇤⇤ −4.6⇤⇤ −3.9⇤ −4.6⇤⇤⇤

(1.8) (1.8) (2.0) (1.6)
Treated ⇥ Event-time, 3 −4.5⇤⇤ −4.7⇤⇤ −4.0⇤ −4.7⇤⇤⇤

(1.8) (1.8) (2.1) (1.6)
Treated ⇥ Event-time, 4 −4.4⇤⇤ −4.7⇤⇤ −4.0⇤ −4.7⇤⇤⇤

(1.7) (1.7) (2.0) (1.6)
Treated ⇥ Event-time, 5 −3.9⇤⇤ −4.6⇤⇤⇤ −3.9⇤ −4.6⇤⇤⇤

(1.7) (1.7) (2.0) (1.6)
Treated ⇥ Event-time, 6 −4.1⇤⇤ −4.8⇤⇤⇤ −4.2⇤⇤ −4.8⇤⇤⇤

(1.7) (1.7) (2.0) (1.6)
Treated ⇥ Event-time, 7 −3.8⇤⇤ −4.8⇤⇤⇤ −4.1⇤⇤ −4.8⇤⇤⇤

(1.6) (1.7) (2.0) (1.6)
Treated ⇥ Event-time, 8 −3.7⇤⇤ −4.6⇤⇤⇤ −3.9⇤ −4.6⇤⇤⇤

(1.6) (1.7) (2.0) (1.6)
Treated ⇥ Event-time, 9 −3.6⇤⇤ −4.6⇤⇤⇤ −3.8⇤ −4.6⇤⇤⇤

(1.7) (1.7) (2.1) (1.6)
Treated ⇥ Event-time, 10 −3.5⇤⇤ −4.4⇤⇤ −3.7⇤ −4.4⇤⇤⇤

(1.7) (1.7) (2.0) (1.6)

Observations 2465 2465 2465 2465

Treated in Sub-experiment FEs Yes Yes No No
Event-time FEs Yes Yes No No
Event-time by Sub-experiment FEs No No Yes Yes
State by Sub-experiment FEs No No Yes Yes

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.

A3



Table A2: Stacked event study regressions, using infant mortality data and an imposed e↵ect,
changing inclusion criteria

All not Strict not No not
yet treated yet treated yet treated

(1) (2) (3)

Real e↵ect −4.9 −4.9 −4.9

A. Post-Treatment Average E↵ect, with weights

Treated (=1)⇥Post (=1) −4.7⇤⇤⇤ −4.7⇤⇤⇤ −4.7⇤⇤⇤

(1.6) (1.6) (1.5)

B. Post-Treatment Average E↵ect, without weights

Treated (=1)⇥Post (=1) −4.0⇤ −4.1⇤⇤ −4.1⇤⇤

(2.0) (2.0) (2.0)

Observations 2465 1972 1938

Event-time-Sub-experiment FEs Yes Yes Yes
State-Sub-experiment FEs Yes Yes Yes

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.
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